skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A systematic review of Human Computer Interaction (HCI) research in medical and other engineering fields
This article provides a systematic review of research related to Human–Computer Interaction techniques supporting training and learning in various domains including medicine, healthcare, and engineering. The focus is on HCI techniques involving Extended Reality (XR) technology which encompasses Virtual Reality, Augmented Reality, and Mixed Reality. HCI-based research is assuming more importance with the rapid adoption of XR tools and techniques in various training and learning contexts including education. There are many challenges in the adoption of HCI approaches, which results in a need to have a comprehensive and systematic review of such HCI methods in various domains. This article addresses this need by providing a systematic literature review of a cross-s Q1 ection of HCI approaches involving proposed so far. The PRISMA-guided search strategy identified 1156 articles for abstract review. Irrelevant abstracts were discarded. The whole body of each article was reviewed for the remaining articles, and those that were not linked to the scope of our specific issue were also eliminated. Following the application of inclusion/exclusion criteria, 69 publications were chosen for review. This article has been divided into the following sections: Introduction; Research methodology; Literature review; Threats of validity; Future research and Conclusion. Detailed classifications (pertaining to HCI criteria and concepts, such as affordance; training, and learning techniques) have also been included based on different parameters based on the analysis of research techniques adopted by various investigators. The article concludes with a discussion of the key challenges for this HCI area along with future research directions. A review of the research outcomes from these publications underscores the potential for greater success when such HCI-based approaches are adopted during such 3D-based training interactions. Such a higher degree of success may be due to the emphasis on the design of userfriendly (and user-centric) training environments, interactions, and processes that positively impact the cognitive abilities of users and their respective learning/training experiences. We discovered data validating XR-HCI as an ascending method that brings a new paradigm by enhancing skills and safety while reducing costs and learning time through replies to three exploratory study questions. We believe that the findings of this study will aid academics in developing new research avenues that will assist XR-HCI applications to mature and become more widely adopted.  more » « less
Award ID(s):
2050960
PAR ID:
10438229
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International journal of human computer interactions
Volume:
Sept 2022
ISSN:
2180-1347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task. We also reviewed the applications of XR in other vocational domains and how they can be leveraged in the manufacturing industry. We finally present some current barriers to XR adoption in manufacturing training and highlight the current limitations that should be considered when looking to develop and apply practical applications of XR. 
    more » « less
  2. Advancements in computer technology have revolutionized extended reality (XR) experiences, including augmented reality (AR), virtual reality (VR), mixed reality (MR), and 360° photography and videography. These technologies have found widespread adoption in various educational contexts, from K-12 schools to universities. However, community and technical colleges in the United States have been slower to adopt these innovative instructional modalities. This study aims to investigate the factors influencing the adoption of XR technologies at 2-year institutions, guided by the consolidated framework for implementation research (CFIR). A qualitative research approach was applied by interviewing 13 educators from 2-year colleges to identify their perception and the challenges faced while implementing XR-enabled instruction. Limited availability of XR educational content, restricted development opportunities of XR content, limited integration of these technologies with existing learning management systems, resource constraints and training needs of educators are some of the factors that hinder implementation of these technologies at 2-year colleges. 
    more » « less
  3. With innovations in the field of gaze and eye tracking, a new concentration of research in the area of gaze-tracked systems and user interfaces has formed in the field of Extended Reality (XR). Eye trackers are being used to explore novel forms of spatial human–computer interaction, to understand human attention and behavior, and to test expectations and human responses. In this article, we review gaze interaction and eye tracking research related to XR that has been published since 1985, which includes a total of 215 publications. We outline efforts to apply eye gaze for direct interaction with virtual content and design of attentive interfaces that adapt the presented content based on eye gaze behavior and discuss how eye gaze has been utilized to improve collaboration in XR. We outline trends and novel directions and discuss representative high-impact papers in detail. 
    more » « less
  4. Annotation in 3D user interfaces such as Augmented Reality (AR) and Virtual Reality (VR) is a challenging and promising area; however, there are not currently surveys reviewing these contributions. In order to provide a survey of annotations for Extended Reality (XR) environments, we conducted a structured literature review of papers that used annotation in their AR/VR systems from the period between 2001 and 2021. Our literature review process consists of several filtering steps which resulted in 103 XR publications with a focus on annotation. We classified these papers based on the display technologies, input devices, annotation types, target object under annotation, collaboration type, modalities, and collaborative technologies. A survey of annotation in XR is an invaluable resource for researchers and newcomers. Finally, we provide a database of the collected information for each reviewed paper. This information includes applications, the display technologies and its annotator, input devices, modalities, annotation types, interaction techniques, collaboration types, and tasks for each paper. This database provides a rapid access to collected data and gives users the ability to search or filter the required information. This survey provides a starting point for anyone interested in researching annotation in XR environments. 
    more » « less
  5. The application of extended reality (XR) technology in education has been growing for the last two decades. XR offers immersive and interactive visualization experiences that can enhance learning by making it engaging. Recent technological advances have led to the availability of high-quality and affordable XR headsets. These advancements have spurred a wave of research focused on designing, implementing, and validating XR educational interventions. Limited literature focuses on the recent trends of XR within science, technology, engineering, and mathematics (STEM) education. Thus, this paper presents an umbrella review that explores the exploding field of XR and its transformative potential in STEM education. Using six online databases, the review zoomed in on 17 out of 1972 papers on XR for STEM education, published between 2020 and 2023, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The results highlighted the types of XR technology applied (i.e., virtual reality and augmented reality), the specific STEM disciplines involved, the focus of each study reviewed, and the major findings from recent reviews. Overall, the educational benefits of using XR technology in STEM education are apparent: XR boosts student motivation, facilitates learning engagement, and improves skills, for example. However, using XR in education still has challenges that must be addressed, such as the physical discomfort of the learner wearing the XR headset and technical glitches. Besides revealing trends of using XR in STEM education, this umbrella review encourages reflection on current practices and suggests ways to apply XR to STEM education effectively. 
    more » « less