The educational applications of extended reality (XR) modalities, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), have increased significantly over the last ten years. Many educators within the Architecture, Engineering, and Construction (AEC) related degree programs see student benefits that could be derived from bringing these modalities into classrooms, which include but are not limited to: a better understanding of each of the subdisciplines and the coordination necessary between them, visualizing oneself as a professional in AEC, and visualization of difficult concepts to increase engagement, self-efficacy, and learning. These benefits, in turn, help recruitment and retention efforts for these degree programs. However, given the number of technologies available and the fact that they quickly become outdated, there is confusion about the definitions of the different XR modalities and their unique capabilities. This lack of knowledge, combined with limited faculty time and lack of financial resources, can make it overwhelming for educators to choose the right XR modality to accomplish particular educational objectives. There is a lack of guidance in the literature for AEC educators to consider various factors that affect the success of an XR intervention. Grounded in a comprehensive literature review and the educational framework of the Model of Domain Learning, this paper proposes a decision-making framework to help AEC educators select the appropriate technologies, platforms, and devices to use for various educational outcomes (e.g., learning, interest generation, engagement) considering factors such as budget, scalability, space/equipment needs, and the potential benefits and limitations of each XR modality. To this end, a comprehensive review of the literature was performed to decipher various definitions of XR modalities and how they have been previously utilized in AEC Education. The framework was then successfully validated at a summer camp in the School of Building Construction at Georgia Institute of Technology, highlighting the importance of using appropriate XR technologies depending on the educational context.
more »
« less
Barriers Toward the Implementation of Extended Reality (XR) Technologies to Support Education and Training in Workforce Development Programs
Advancements in computer technology have revolutionized extended reality (XR) experiences, including augmented reality (AR), virtual reality (VR), mixed reality (MR), and 360° photography and videography. These technologies have found widespread adoption in various educational contexts, from K-12 schools to universities. However, community and technical colleges in the United States have been slower to adopt these innovative instructional modalities. This study aims to investigate the factors influencing the adoption of XR technologies at 2-year institutions, guided by the consolidated framework for implementation research (CFIR). A qualitative research approach was applied by interviewing 13 educators from 2-year colleges to identify their perception and the challenges faced while implementing XR-enabled instruction. Limited availability of XR educational content, restricted development opportunities of XR content, limited integration of these technologies with existing learning management systems, resource constraints and training needs of educators are some of the factors that hinder implementation of these technologies at 2-year colleges.
more »
« less
- PAR ID:
- 10535539
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 68
- Issue:
- 1
- ISSN:
- 1071-1813
- Format(s):
- Medium: X Size: p. 265-269
- Size(s):
- p. 265-269
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Human Factors Extended Reality (XR) Showcase is an annual, interactive hands-on demonstration session of XR technologies and applications. Attendees can walk to different stations to experience the applications while the presenter explains. The 12 interactive demonstration stations highlight the integration of XR technologies and other technologies, including haptic devices and artificial intelligence, to enable human factor research and applications that span training, learning, research assessment, and simulations. Aligned with the mission of HFES, the purpose of the XR Showcase is to enable individuals to acquire knowledge about XR applications through interactive demonstrations, increase exposure of XR to the HFES community, support content visualization of interdisciplinary research, and create an exchange forum to support communication and collaboration.more » « less
-
Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task. We also reviewed the applications of XR in other vocational domains and how they can be leveraged in the manufacturing industry. We finally present some current barriers to XR adoption in manufacturing training and highlight the current limitations that should be considered when looking to develop and apply practical applications of XR.more » « less
-
The application of extended reality (XR) technology in education has been growing for the last two decades. XR offers immersive and interactive visualization experiences that can enhance learning by making it engaging. Recent technological advances have led to the availability of high-quality and affordable XR headsets. These advancements have spurred a wave of research focused on designing, implementing, and validating XR educational interventions. Limited literature focuses on the recent trends of XR within science, technology, engineering, and mathematics (STEM) education. Thus, this paper presents an umbrella review that explores the exploding field of XR and its transformative potential in STEM education. Using six online databases, the review zoomed in on 17 out of 1972 papers on XR for STEM education, published between 2020 and 2023, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The results highlighted the types of XR technology applied (i.e., virtual reality and augmented reality), the specific STEM disciplines involved, the focus of each study reviewed, and the major findings from recent reviews. Overall, the educational benefits of using XR technology in STEM education are apparent: XR boosts student motivation, facilitates learning engagement, and improves skills, for example. However, using XR in education still has challenges that must be addressed, such as the physical discomfort of the learner wearing the XR headset and technical glitches. Besides revealing trends of using XR in STEM education, this umbrella review encourages reflection on current practices and suggests ways to apply XR to STEM education effectively.more » « less
-
This alternative format session provides a forum for human factors scholars and practitioners to showcase how state-of-the-art extended reality (XR) applications are being used in academia, defense, and industry to address human factors research. The session will begin with short introductions from each presenter to describe their XR application. Afterward, session attendees will engage with the presenters and their demonstrations, which will be set up around the demonstration floor room. This year’s showcase features XR applications in STEM education, medical and aviation training, agricultural data visualization, homeland security, training design, and visitor engagement in informal learning settings. Our goal is for attendees to experience how human factors professionals use XR to support human factors-oriented research and to learn about the exciting work being conducted with these emerging technologies.more » « less
An official website of the United States government
