skip to main content


Title: X-ray diffraction reveals two structural transitions in szomolnokite
Abstract Hydrated sulfates have been identified and studied in a wide variety of environments on Earth, Mars, and the icy satellites of the solar system. The subsurface presence of hydrous sulfur-bearing phases to any extent necessitates a better understanding of their thermodynamic and elastic properties at pressure. End-member experimental and computational data are lacking and are needed to accurately model hydrous, sulfur-bearing planetary interiors. In this work, high-pressure X-ray diffraction (XRD) and synchrotron Fourier-transform infrared (FTIR) measurements were conducted on szomolnokite (FeSO4·H2O) up to ~83 and 24 GPa, respectively. This study finds a monoclinic-triclinic (C2/c to P1) structural phase transition occurring in szomolnokite between 5.0(1) and 6.6(1) GPa and a previously unknown triclinic-monoclinic (P1 to P21) structural transition occurring between 12.7(3) and 16.8(3) GPa. The high-pressure transition was identified by the appearance of distinct reflections in the XRD patterns that cannot be attributed to a second phase related to the dissociation of the P1 phase, and it is further characterized by increased H2O bonding within the structure. We fit third-order Birch-Murnaghan equations of state for each of the three phases identified in our data and refit published data to compare the elastic parameters of szomolnokite, kieserite (MgSO4·H2O), and blödite (Na2Mg(SO4)2·4H2O). At ambient pressure, szomolnokite is less compressible than blödite and more than kieserite, but by 7 GPa both szomolnokite and kieserite have approximately the same bulk modulus, while blödite’s remains lower than both phases up to 20 GPa. These results indicate the stability of szomolnokite’s high-pressure monoclinic phase and the retention of water within the structure up to pressures found in planetary deep interiors.  more » « less
Award ID(s):
2009935
NSF-PAR ID:
10438236
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
108
Issue:
3
ISSN:
0003-004X
Page Range / eLocation ID:
476 to 484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. Full elastic constant tensors indicate that phase egg is very anisotropic resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% at zero pressures. Our results also indicate that the phase egg has one of the fastest bulk sound velocities (vP and vS) compared to other hydrous aluminous phases in the ASH ternary, which include topaz-OH, phase Pi, and d-AlOOH. However, the bulk sound velocity of phase egg is slower than that of stishovite. At depths corresponding to the base of mantle transition zone, phase egg decomposes to a mixture of d-AlOOH and stishovite. The changes in compressional DvP and shear DvS velocity associated with the decomposition is ~0.42% and –1.23%, respectively. Although phase egg may be limited to subducted sediments, it could hold several weight percentages of water along a normal mantle geotherm. 
    more » « less
  2. Abstract As a major nominally anhydrous mineral (NAM) in the Earth’s upper mantle, orthopyroxene could host up to several hundred parts per million H2O in its crystal structure and transport the H2O to the deep Earth. To study the effect of structural H2O on the elasticity of orthopyroxene, we have measured the single-crystal elasticity of Mg1.991Al0.065Si1.951O6 with 842–900 ppm H2O and 1.64 ± 0.20 wt% Al2O3 at ambient conditions using Brillouin spectroscopy. The best-fit single-crystal elastic moduli (Cijs), bulk (KS0), and shear (G0) modulus of the hydrous Al-bearing orthopyroxene were determined as: C11 = 235(2) GPa, C22 = 173(2) GPa, C33 = 222(2) GPa, C44 = 86(1) GPa, C55 = 82(1) GPa, C66 = 82(1) GPa, C12 = 75(3) GPa, C13 = 67(2) GPa, and C23 = 49(2) GPa, KS0 = 111(2) GPa, and G0 = 78(1) GPa. Systematic analysis based on the results presented in this and previous studies suggests that the incorporation of 842–900 ppm H2O would increase C13 by 12.0(7)% and decrease C23 by 8.6(8)%. The effects on C11, C22, C33, C44, C66, KS0, and VP are subtle if not negligible when considering the uncertainties. The C55, C12, G0, and VS are not affected by the presence of structural H2O. Although laboratory experiments show that Fe,Al-bearing orthopyroxenes can host up to 0.8 wt% H2O in its structure, future high-pressure-temperature elasticity measurements on orthopyroxene with higher H2O content are needed to help better quantify this effect. 
    more » « less
  3. Abstract

    Super‐Earths ranging up to 10 Earth masses (ME) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4as a low‐pressure analog to Mg2SiO4between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe3O4adopts an 8‐fold coordinated Th3P4‐type structure (I‐43d,Z = 4) with disordered Fe2+and Fe3+into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg2SiO4above 500 GPa in super‐Earth mantles and suggests that Mg2SiO4can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe3O4indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe3O4fugacity buffer considering the Fe3O4phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.

     
    more » « less
  4. The large range in oxidation states of sulfur (-II to +VI) provides it with a large oxidation potential in rocks, even at relatively low concentrations. Most importantly, the transition from sulfide to sulfate species in rocks and silicate melts occurs in the same approximate fO2 region (for a given temperature) as the transition from ferrous to ferric iron, and reduced S species can coexist with oxidized Fe and vice versa. The result is a large potential for reactions involving sulfur to oxidize or reduce Fe in silicate minerals, since Fe only occurs in two oxidation states (+II and +III). In order for sulfur to be released during slab dehydration, sulfur in sulfide must be converted into an easily dissolved species, such as SO42− or H2S, through either oxidation or reduction. We propose that oxidation of sulfur in sulfide follows the generalized reaction: 8Fe3+SiaOb(OH)c +S2− = 8Fe2+SidOe +SO42− +(H2O)f (1) In this type of reaction, sulfur participates in the dehydration of greenschist- or blueschist-facies hydrous silicates during transition to the eclogite facies: ferric Fe in Fe-bearing silicates (chlorite, amphibole, epidote) is reduced to ferrous Fe in anhydrous ferromagnesian silicates (pyroxene, garnet). At the same time, the reaction consumes sulfide by oxidation of S2− to produce SO42−, which is readily dissolved in the fluid produced during dehydration. Additionally, a similar redox reaction could oxidize sulfur by reducing ferric Fe in oxides. It is important to note that one mole of S has the same redox potential as 8 moles of Fe. The molar ratio of 8 moles of Fe per 1 mole of S translates to a mass ratio of approximately 14; therefore, small concentrations of sulfur can have a large impact on reduction/oxidation of the silicate assemblage. Our observations show that sulfide minerals that can be identified as primary or related to the peak metamorphic stage are rare in eclogites and restricted to inclusions in garnet, consistent with reaction (1). Thermodynamic modeling is currently underway to assess the influence of sulfur on the phase equilibria of silicate phases during high pressure metamorphism. 
    more » « less
  5. Abstract Acoustic compressional and shear wave velocities (VP, VS) of anhydrous (AHRG) and hydrous rhyolitic glasses (HRG) containing 3.28 wt% (HRG-3) and 5.90 wt% (HRG-6) total water concentration (H2Ot) have been measured using Brillouin light scattering (BLS) spectroscopy up to 3 GPa in a diamond-anvil cell at ambient temperature. In addition, Fourier-transform infrared (FTIR) spectroscopy was used to measure the speciation of H2O in the glasses up to 3 GPa. At ambient pressure, HRG-3 contains 1.58 (6) wt% hydroxyl groups (OH–) and 1.70 (7) wt% molecular water (H2Om) while HRG-6 contains 1.67 (10) wt% OH– and 4.23 (17) wt% H2Om where the numbers in parentheses are ±1σ. With increasing pressure, very little H2Om, if any, converts to OH– within uncertainties in hydrous rhyolitic glasses such that HRG-6 contains much more H2Om than HRG-3 at all experimental pressures. We observe a nonlinear relationship between high-pressure sound velocities and H2Ot, which is attributed to the distinct effects of each water species on acoustic velocities and elastic moduli of hydrous glasses. Near ambient pressure, depolymerization due to OH– reduces VS and G more than VP and KS. VP and KS in both anhydrous and hydrous glasses decrease with increasing pressure up to ~1–2 GPa before increasing with pressure. Above ~1–2 GPa, VP and KS in both hydrous glasses converge with those in AHRG. In particular, VP in HRG-6 crosses over and becomes higher than VP in AHRG. HRG-6 displays lower VS and G than HRG-3 near ambient pressure, but VS and G in these glasses converge above ~2 GPa. Our results show that hydrous rhyolitic glasses with ~2–4 wt% H2Om can be as incompressible as their anhydrous counterpart above ~1.5 GPa. The nonlinear effects of hydration on high-pressure acoustic velocities and elastic moduli of rhyolitic glasses observed here may provide some insight into the behavior of hydrous silicate melts in felsic magma chambers at depth. 
    more » « less