skip to main content

This content will become publicly available on January 3, 2023

Title: Single-crystal elasticity of phase Egg AlSiO3OH and δ-AlOOH by Brillouin spectroscopy
Abstract Phase Egg and δ-AlOOH are two typical hydrous phases that might exist in the wet sedimentary layer of subducted slabs under mantle conditions. They are thus regarded as potential water carriers to Earth’s deep mantle. In this report, we report the full elastic constants of both phases determined by Brillouin scattering and X-ray diffraction measurements under ambient conditions. Our results indicate that the hydrogen-bond configurations in the crystal structures of the two phases have a profound effect on their principal elastic constants. The adiabatic bulk modulus (KS) and shear modulus (G) calculated from the obtained elastic constants using the Voigt-Reuss-Hill averaging scheme are 158.3(201) GPa and 123.0(60) GPa for phase Egg and 162.9(31) GPa and 145.2(13) GPa for δ-AlOOH, respectively. These results allow us to evaluate elastic moduli and sound velocities of hydrous minerals in the Al2O3-H2O-SiO2 ternary system (simplified composition of subducted wet sedimentary layer) at ambient conditions, including the contrast of the acoustic velocities VP and VS for the reaction AlSi3OH = δ-AlOOH + SiO2 (stishovite) and the evolution in the elastic moduli and sound velocities of hydrous minerals as a function of density.
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
American Mineralogist
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. Full elastic constant tensors indicate that phase egg is very anisotropic resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% atmore »zero pressures. Our results also indicate that the phase egg has one of the fastest bulk sound velocities (vP and vS) compared to other hydrous aluminous phases in the ASH ternary, which include topaz-OH, phase Pi, and d-AlOOH. However, the bulk sound velocity of phase egg is slower than that of stishovite. At depths corresponding to the base of mantle transition zone, phase egg decomposes to a mixture of d-AlOOH and stishovite. The changes in compressional DvP and shear DvS velocity associated with the decomposition is ~0.42% and –1.23%, respectively. Although phase egg may be limited to subducted sediments, it could hold several weight percentages of water along a normal mantle geotherm.« less
  2. Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.
  3. The degree to which the Earth’s mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H, are stable to the pressures and temperatures of the Earth’s lower mantle, suggesting that the Earth’s lower mantle may participate in the cycling of water. We build on our prior work of density functional theory calculations on phase H with the stability, structure, and bonding of hydrous phases D, and we predict the aluminum partitioning with H in the Al 2 O 3 -SiO 2 -MgO-H 2 O system. We address the solid solutions through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We show that each phase has a wide solid solution series between MgSi 2 O 6 H 2 -Al 2 SiO 6 H 2 and MgSiO 4 H 2 -2 δ AlOOH + SiO 2 , in which phase H is more aluminum rich than phase D at a given bulk composition. We predict that the addition of Al to both phases D and Hmore »stabilizes each phase to higher temperatures through additional configurational entropy. While we have shown that phase H does not exhibit symmetric hydrogen bonding at high pressure, we report here that phase D undergoes a gradual increase in the number of symmetric H-bonds beginning at ∼30 GPa, and it is only ∼50% complete at 60 GPa.« less
  4. Abstract We investigated the structure, equation of state, thermodynamics, and elastic properties of tremolite amphibole [Ca2Mg5Si8O22(OH)2] up to 10 GPa and 2000 K, using first principles simulations based on density functional perturbation theory. We found that at 300 K, the pressure-volume results can be adequately described by a third-order Birch-Murnaghan equation of state with bulk moduli K0 of 78.5 and 66.3 GPa based on local density approximation (LDA) and generalized gradient approximation (GGA), respectively. We also derived its coefficients of the elastic tensor based on LDA and GGA and found that the LDA result is in good agreement with the experimental results. At 300 K, the shear modulus G0 is 58.0 GPa based on LDA. The pressure derivative of the bulk modulus K′ is 5.9, while that of the shear modulus G′ is 1.3. The second Grüneisen parameter, or δT = [–1/(αKT)](∂KT/∂T)P, is 3.3 based on LDA. We found that at ambient conditions, tremolite is elastically anisotropic with the compressional wave velocity anisotropy AVP being 34.6% and the shear wave velocity anisotropy AVS being 27.5%. At higher pressure corresponding to the thermodynamic stability of tremolite, i.e., ~3 GPa, the AVP reduces to 29.5%, whereas AVS increases to 30.8%. To evaluatemore »whether the presence of hydrous phases such as amphibole and phlogopite could account for the observed shear wave velocity (VS) anomaly at the mid-lithospheric discontinuity (MLD), we used the thermoelasticities of tremolite (as a proxy for other amphiboles), phlogopite, and major mantle minerals to construct synthetic velocity profiles. We noted that at depths corresponding to the mid-lithosphere, the presence of 25 vol% amphibole and 1 vol% phlogopite could account for a VS reduction of 2.3%. Thus based on our thermoelasticity results on tremolite amphibole, it seems that mantle metasomatism could partly explain the MLD.« less
  5. Abstract As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth's core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as “OE-phase”). It forms at pressures greater than 40gigapascals when (Mg, Fe)-bearing hydrous materials are heated over 1,500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex-situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1,000 km in Earth's mantle. The emergence of oxygen-excess reservoirs out of primordial and subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.