The COVID-19-induced closure of schools significantly impacted the field experiences of students enrolled in teacher preparation programs. We addressed this ongoing challenge by adapting an early field experience model for secondary teachers that shifted online mid-semester. The University Teaching Experience model deploys a cohort of preservice secondary mathematics teachers to support instruction in an introductory university mathematics course. When the designated mathematics course moved online, the preservice teachers were able to continue their field experience by facilitating small-group discussions in virtual breakout rooms. To understand the perspectives of the stakeholders participating in the online field experience, we conducted semi-structured one-on-one interviews with the preservice teachers, the mathematics course instructor, and the university mathematics students involved in this setting. Early results indicated that the preservice teachers were highly valued by both the course instructor and the undergraduate mathematics students. Additionally, the preservice teachers appreciated the opportunity to continue their field experience, albeit in the more limited format. We present themes which emerged from preservice teacher interviews and share guidance for teacher preparation program faculty interested in trying an online early field experience while access to K-12 classrooms is limited.
more »
« less
Investigating the Development of Preservice Science Teachers’ Nature of Science Instructional Views Across Rings of the Family Resemblance Approach Wheel
While much is known about teacher learning of nature of science (NOS) concepts, less is known about how teachers develop an understanding of how to effectively teach NOS or how instructional views might differ across levels of the Family Resemblance Approach (FRA) wheel. Therefore, this study investigated the NOS instructional views related to different levels of the FRA wheel of preservice secondary science teachers as they completed a semester-long NOS course. At four times during the semester, data was collected through written documents and interviews about NOS instructional views. Participant NOS instructional views were evaluated in terms of three aspects of NOS teaching: explicit, reflective, and role of context (McComas et al., 2020). In terms of the explicit and reflective components of NOS instruction, participants generally progressed from utilizing inaccurate representations of NOS to inclusion of accurate implicit messages, and finally to explicit reflective instruction often mimicking course activities. As the semester progressed, their questioning also moved toward targeting more specific NOS aspects. As far as the role of context, participants moved from treating NOS as its own topic to a more embedded approach. Other findings include that preservice teachers tended to use more abstract and contextualized activities for social institutional aspects of NOS as opposed to concrete and moderately contextualized activities for cognitive-epistemic NOS. Features of the NOS course may account for some aspects of the learning progressions observed.
more »
« less
- Award ID(s):
- 1949833
- PAR ID:
- 10438248
- Date Published:
- Journal Name:
- Science & Education
- ISSN:
- 0926-7220
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lischka, Alyson E. ; Dyer, Elizabeth B. ; Jones, Ryan Seth ; Lovett, Jennifer N. ; Strayer, Jeremy ; Drown, Samantha. (Ed.)This report is part of a larger, longitudinal study focusing on the development of equity-related knowledge, beliefs, and practice across 68 individuals and five teacher preparation programs. In this brief report, we seek to unpack the ways five preservice and beginning mathematics teachers think about equity, especially as it relates to their current and future teacher practice. Analysis of interview data from these participants suggest as many as twelve different aspects of equity reflected in their thinking, as well as multiple actions teachers could take to promote equity including raising expectations, rejecting deficit views, and using complex instruction.more » « less
-
null (Ed.)We explored how preservice teachers in a middle school science methods course learned and applied computational thinking (CT) concepts and activities during a month-long intervention. In the intervention, preservice teachers learned about CT concepts through an hour-long lecture in their methods class, practiced a computing-integration activity for electromagnetic waves, and prepared and implemented a lesson plan based on the activity in student teaching. The intervention was in the early stages of design, and, therefore, the research is exploratory with primarily qualitative data. The data were collected at multiple points throughout the month to measure the development of knowledge and attitudes about CT and computing integration. We found that preservice teachers had little knowledge of computing before the intervention that gradually evolved into a deep understanding that they wanted to apply to computing-integrated activities science and other subjects. Though they had high levels of uncertainty after initial instruction and practicing the computing-integration activity, they found the student teaching experience rewarding and motivating to including computing in their future teaching practice.more » « less
-
Preservice science courses typically demonstrate valuable semester impacts on preservice teachers, but less is known about how such courses impact future teacher practice. Using the theory of planned behavior, this study investigates how an undergraduate Physical Science course, focused on the Next Generation Science Standards (NGSS), influences elementary teachers’ longer-term intentions to teach Physical Science. Data sources include a questionnaire with credential-candidate teachers (n=31), who completed a Physical Science course as undergraduates, and interviews with teacher educators, professional development providers, and practicing elementary teachers (n=9). Findings illustrate that credential-candidate teachers did not teach Physical Science during their teaching placements. Such findings were further supported by stakeholders. We detail strategies that could support elementary teachers’ teaching of Physical Science.more » « less
-
Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they identified collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction.more » « less