skip to main content


This content will become publicly available on June 27, 2024

Title: DisGUIDE: Disagreement-Guided Data-Free Model Extraction
Recent model-extraction attacks on Machine Learning as a Service (MLaaS) systems have moved towards data-free approaches, showing the feasibility of stealing models trained with difficult-to-access data. However, these attacks are ineffective or limited due to the low accuracy of extracted models and the high number of queries to the models under attack. The high query cost makes such techniques infeasible for online MLaaS systems that charge per query.We create a novel approach to get higher accuracy and query efficiency than prior data-free model extraction techniques. Specifically, we introduce a novel generator training scheme that maximizes the disagreement loss between two clone models that attempt to copy the model under attack. This loss, combined with diversity loss and experience replay, enables the generator to produce better instances to train the clone models. Our evaluation on popular datasets CIFAR-10 and CIFAR-100 shows that our approach improves the final model accuracy by up to 3.42% and 18.48% respectively. The average number of queries required to achieve the accuracy of the prior state of the art is reduced by up to 64.95%. We hope this will promote future work on feasible data-free model extraction and defenses against such attacks.  more » « less
Award ID(s):
2006688 1901242
NSF-PAR ID:
10438329
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
8
ISSN:
2159-5399
Page Range / eLocation ID:
9614 to 9622
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High quality Machine Learning (ML) models are often considered valuable intellectual property by companies. Model Stealing (MS) attacks allow an adversary with black-box access to a ML model to replicate its functionality by training a clone model using the predictions of the target model for different inputs. However, best available existing MS attacks fail to produce a high-accuracy clone without access to the target dataset or a representative dataset necessary to query the target model. In this paper, we show that preventing access to the target dataset is not an adequate defense to protect a model. We propose MAZE -- a data-free model stealing attack using zeroth-order gradient estimation that produces high-accuracy clones. In contrast to prior works, MAZE uses only synthetic data created using a generative model to perform MS. Our evaluation with four image classification models shows that MAZE provides a normalized clone accuracy in the range of 0.90x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and on surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy 0.97x to 1.0x) and reduces the query budget required for the attack by 2x-24x. 
    more » « less
  2. null (Ed.)
    As machine learning is deployed in more settings, including in security-sensitive applications such as malware detection, the risks posed by adversarial examples that fool machine-learning classifiers have become magnified. Black-box attacks are especially dangerous, as they only require the attacker to have the ability to query the target model and observe the labels it returns, without knowing anything else about the model. Current black-box attacks either have low success rates, require a high number of queries, produce adversarial images that are easily distinguishable from their sources, or are not flexible in controlling the outcome of the attack. In this paper, we present AdversarialPSO, (Code available: https://github.com/rhm6501/AdversarialPSOImages) a black-box attack that uses few queries to create adversarial examples with high success rates. AdversarialPSO is based on Particle Swarm Optimization, a gradient-free evolutionary search algorithm, with special adaptations to make it effective for the black-box setting. It is flexible in balancing the number of queries submitted to the target against the quality of the adversarial examples. We evaluated AdversarialPSO on CIFAR-10, MNIST, and Imagenet, achieving success rates of 94.9%, 98.5%, and 96.9%, respectively, while submitting numbers of queries comparable to prior work. Our results show that black-box attacks can be adapted to favor fewer queries or higher quality adversarial images, while still maintaining high success rates. 
    more » « less
  3. Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., ~1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades). 
    more » « less
  4. Several recent works have demonstrated highly effective model stealing (MS) attacks on Deep Neural Networks (DNNs) in black-box settings, even when the training data is unavailable. These attacks typically use some form of Out of Distribution (OOD) data to query the target model and use the predictions obtained to train a clone model. Such a clone model learns to approximate the decision boundary of the target model, achieving high accuracy on in-distribution examples. We propose Ensemble of Diverse Models (EDM) to defend against such MS attacks. EDM is made up of models that are trained to produce dissimilar predictions for OOD inputs. By using a different member of the ensemble to service different queries, our defense produces predictions that are highly discontinuous in the input space for the adversary's OOD queries. Such discontinuities cause the clone model trained on these predictions to have poor generalization on in-distribution examples. Our evaluations on several image classification tasks demonstrate that EDM defense can severely degrade the accuracy of clone models (up to 39.7%). Our defense has minimal impact on the target accuracy, negligible computational costs during inference, and is compatible with existing defenses for MS attacks. 
    more » « less
  5. Machine learning is being increasingly used by individu- als, research institutions, and corporations. This has resulted in the surge of Machine Learning-as-a-Service (MLaaS) - cloud services that provide (a) tools and resources to learn the model, and (b) a user-friendly query interface to access the model. However, such MLaaS systems raise concerns such as model extraction. In model extraction attacks, adversaries maliciously exploit the query interface to steal the model. More precisely, in a model extraction attack, a good approxi- mation of a sensitive or proprietary model held by the server is extracted (i.e. learned) by a dishonest user who interacts with the server only via the query interface. This attack was introduced by Tramèr et al. at the 2016 USENIX Security Symposium, where practical attacks for various models were shown. We believe that better understanding the efficacy of model extraction attacks is paramount to designing secure MLaaS systems. To that end, we take the first step by (a) formalizing model extraction and discussing possible defense strategies, and (b) drawing parallels between model extraction and established area of active learning. In particular, we show that recent advancements in the active learning domain can be used to implement powerful model extraction attacks, and investigate possible defense strategies. 
    more » « less