High quality Machine Learning (ML) models are often considered valuable intellectual property by companies. Model Stealing (MS) attacks allow an adversary with black-box access to a ML model to replicate its functionality by training a clone model using the predictions of the target model for different inputs. However, best available existing MS attacks fail to produce a high-accuracy clone without access to the target dataset or a representative dataset necessary to query the target model. In this paper, we show that preventing access to the target dataset is not an adequate defense to protect a model. We propose MAZE -- a data-free model stealing attack using zeroth-order gradient estimation that produces high-accuracy clones. In contrast to prior works, MAZE uses only synthetic data created using a generative model to perform MS. Our evaluation with four image classification models shows that MAZE provides a normalized clone accuracy in the range of 0.90x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and on surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy 0.97x to 1.0x) and reduces the query budget required for the attack by 2x-24x.
more »
« less
Protecting DNNs from Theft using an Ensemble of Diverse Models
Several recent works have demonstrated highly effective model stealing (MS) attacks on Deep Neural Networks (DNNs) in black-box settings, even when the training data is unavailable. These attacks typically use some form of Out of Distribution (OOD) data to query the target model and use the predictions obtained to train a clone model. Such a clone model learns to approximate the decision boundary of the target model, achieving high accuracy on in-distribution examples. We propose Ensemble of Diverse Models (EDM) to defend against such MS attacks. EDM is made up of models that are trained to produce dissimilar predictions for OOD inputs. By using a different member of the ensemble to service different queries, our defense produces predictions that are highly discontinuous in the input space for the adversary's OOD queries. Such discontinuities cause the clone model trained on these predictions to have poor generalization on in-distribution examples. Our evaluations on several image classification tasks demonstrate that EDM defense can severely degrade the accuracy of clone models (up to 39.7%). Our defense has minimal impact on the target accuracy, negligible computational costs during inference, and is compatible with existing defenses for MS attacks.
more »
« less
- Award ID(s):
- 1646392
- PAR ID:
- 10322050
- Date Published:
- Journal Name:
- International Conference on Learning Representations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent model-extraction attacks on Machine Learning as a Service (MLaaS) systems have moved towards data-free approaches, showing the feasibility of stealing models trained with difficult-to-access data. However, these attacks are ineffective or limited due to the low accuracy of extracted models and the high number of queries to the models under attack. The high query cost makes such techniques infeasible for online MLaaS systems that charge per query.We create a novel approach to get higher accuracy and query efficiency than prior data-free model extraction techniques. Specifically, we introduce a novel generator training scheme that maximizes the disagreement loss between two clone models that attempt to copy the model under attack. This loss, combined with diversity loss and experience replay, enables the generator to produce better instances to train the clone models. Our evaluation on popular datasets CIFAR-10 and CIFAR-100 shows that our approach improves the final model accuracy by up to 3.42% and 18.48% respectively. The average number of queries required to achieve the accuracy of the prior state of the art is reduced by up to 64.95%. We hope this will promote future work on feasible data-free model extraction and defenses against such attacks.more » « less
-
Although a substantial amount of studies is dedicated to morphing detection, most of them fail to generalize for morph faces outside of their training paradigm. Moreover, recent morph detection methods are highly vulnerable to adversarial attacks. In this paper, we intend to learn a morph detection model with high generalization to a wide range of morphing attacks and high robustness against different adversarial attacks. To this aim, we develop an ensemble of convolutional neural networks (CNNs) and Transformer models to benefit from their capabilities simultaneously. To improve the robust accuracy of the ensemble model, we employ multi-perturbation adversarial training and generate adversarial examples with high transferability for several single models. Our exhaustive evaluations demonstrate that the proposed robust ensemble model generalizes to several morphing attacks and face datasets. In addition, we validate that our robust ensemble model gains better robustness against several adversarial attacks while outperforming the state-of-the-art studies.more » « less
-
In a black-box setting, the adversary only has API access to the target model and each query is expensive. Prior work on black-box adversarial examples follows one of two main strategies: (1) transfer attacks use white-box attacks on local models to find candidate adversarial examples that transfer to the target model, and (2) optimization-based attacks use queries to the target model and apply optimization techniques to search for adversarial examples. We propose hybrid attacks that combine both strategies, using candidate adversarial examples from local models as starting points for optimization-based attacks and using labels learned in optimization-based attacks to tune local models for finding transfer candidates. We empirically demonstrate on the MNIST, CIFAR10, and ImageNet datasets that our hybrid attack strategy reduces cost and improves success rates, and in combination with our seed prioritization strategy, enables batch attacks that can efficiently find adversarial examples with only a handful of queries.more » « less
-
Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization.more » « less