skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sampling affects population genetic inference: A case study of the Allen’s ( Selasphorus sasin ) and rufous hummingbird ( Selasphorus rufus )
Abstract Gene flow can affect evolutionary inference when species are undersampled. Here, we evaluate the effects of gene flow and geographic sampling on demographic inference of 2 hummingbirds that hybridize, Allen’s hummingbird (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). Using whole-genome data and extensive geographic sampling, we find widespread connectivity, with introgression far beyond the Allen’s × rufous hybrid zone, although the Z chromosome resists introgression beyond the hybrid zone. We test alternative hypotheses of speciation history of Allen’s, rufous, and Calliope (S. calliope) hummingbird and find that rufous hummingbird is the sister taxon to Allen’s hummingbird, and Calliope hummingbird is the outgroup. A model treating the 2 subspecies of Allen’s hummingbird as a single panmictic population fit observed genetic data better than models treating the subspecies as distinct populations, in contrast to morphological and behavioral differences and analyses of spatial population structure. With additional sampling, our study builds upon recent studies that came to conflicting conclusions regarding the evolutionary histories of these 2 species. Our results stress the importance of thorough geographic sampling when assessing demographic history in the presence of gene flow.  more » « less
Award ID(s):
1656708
PAR ID:
10438393
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Heredity
ISSN:
0022-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Allen’s (Selasphorus sasin) and Rufous (S. rufus) hummingbird have long been suspected to hybridize, and potentially form a hybrid zone where their ranges overlap in southern Oregon. Migratory Allen’s Hummingbird (S. s. sasin) breeds along a narrow strip of the California coast up to the Oregon border, while Rufous Hummingbird breeds from southern Oregon to Alaska. Analysis of behavioral and morphological data for 183 males and morphological data from 138 females showed that Allen’s and Rufous hummingbird form a hybrid zone in southern Oregon and northern California. Linear discriminant function analysis and cline analysis of 20 phenotypic characters for males and 9 phenotypic characters for females suggested the center of the coastal transect of this north–south hybrid zone spanned from Bandon, Oregon (Coos County), to Port Orford, Oregon (Curry County). The contact zone extended north into the breeding range of Rufous (into Florence, Lane County, Oregon) and south into the range of Allen’s (into Arcata, Humboldt County, California). Sporadic inland sampling suggested the hybrid zone extended at least 94 km inland from the coast. Behavioral data included courtship displays, which were composed of discrete, modular, behavioral elements. Sexual selection acted on these courtship displays, as behavioral clines related to courtship behaviors were more narrow than morphological clines. Some of the courtship behaviors analyzed included previously undescribed diagnostic behavioral characters for Allen’s and Rufous hummingbird. 
    more » « less
  2. Baldauf, Sandra (Ed.)
    Abstract The southwestern and central United States serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study, we combine thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the Texas horned lizard (Phrynosoma cornutum) to quantify relative support for different catalysts of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at least three primary populations. The spatial distribution of populations appears concordant with habitat type, with desert populations in AZ and NM showing the largest genetic divergence from the remaining populations. The mtDNA data also support a divergent desert population, but other relationships differ and suggest mtDNA introgression. Genotype–environment association with bioclimatic variables supports divergence along precipitation gradients more than along temperature gradients. Demographic analyses support a complex history, with introgression and gene flow playing an important role during diversification. Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that gene flow occurred between populations. Paleo-species distribution models support two southern refugia that geographically correspond to contemporary lineages. We find that divergence times are underestimated and population sizes are overestimated when introgression occurred and is ignored in coalescent analyses, and furthermore, inference of ancient introgression events and demographic history is sensitive to inclusion of a single recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia hypotheses. Results also suggest that populations are continuing to diverge along habitat gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among populations suggests that P. cornutum should be considered a single widespread species under the General Lineage Species Concept. 
    more » « less
  3. Abstract Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift, recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination, whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained a convolutional neural network to classify our data into alternative diversification models and estimate demographic parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss. Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting, albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture; geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation; speciation; species tree.] 
    more » « less
  4. The Andean and Atlantic forests are separated by the open vegetation corridor, which acts as a geographic barrier. However, these forests experienced cycles of connection and isolation in the past, which shaped the phylogeographic patterns of their biotas. We analysed the evolutionary history of the rufous‐capped antshrikeThamnophilus ruficapillus, a species with a disjunct distribution in the Atlantic and Andean forests and thus an appropriate model to study the effect of the open vegetation corridor and the Andes on the diversification of the Neotropical avifauna. We performed a phylogenetic/phylogeographic analysis, including the five subspecies, using mitochondrial and nuclear genomic DNA, and studied their differences in vocalizations and plumage coloration. Both the mitochondrial and nuclear DNA evidenced a marked phylogeographic structure with three differentiated lineages that diverged without signs of gene flow in the Pleistocene (1.0–1.7 million years ago): one in the Atlantic Forest and two in the Andean forest. However, the two Andean lineages do not coincide with the two disjunct areas of distribution of the species in the Andes. Vocalizations were significantly different between most subspecies, but their pattern of differentiation was discordant with that of the nuclear and mitochondrial DNA. In fact, we did not find song differentiation between the subspecies of the Atlantic Forest and that of the northwestern Bolivian Andes, even though they differ genetically and belong to different lineages. Consistently, no differences were found in plumage coloration between the subspecies of the Atlantic Forest and that of the southern Andes. Our results suggest a complex evolutionary history in this species, which differentiated both due to dispersion across the open vegetation corridor, likely during a period of connection between the Andean and Atlantic forests, and the effect of the Bolivian Altiplano as a geographic barrier. In both cases, Pleistocene climatic oscillations appear to have influenced the species diversification. 
    more » « less
  5. Buerkle, Alex (Ed.)
    Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species ) . Taxa within Erythranthe , particularly the parapatric and putatively sister species M . lewisii (bee-pollinated) and M . cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M . cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M . lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson’s D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M . lewisii and M . cardinalis . Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M . lewisii and Southern Californian M . parishii each carrying organelle genomes nested within respective sympatric M . cardinalis clades. A recent organellar transfer from M . cardinalis , an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M . parishii organelles in hybrids with M . lewisii . Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation. 
    more » « less