skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of the New England Seamount Chain on Gulf Stream Pathway and Variability
Abstract The potential role of the New England seamount chain (NESC) on the Gulf Stream pathway and variability has been long recognized, and the series of numerical experiments presented in this paper further emphasize the importance of properly resolving the NESC when modeling the Gulf Stream. The NESC has a strong impact on the Gulf Stream pathway and variability, as demonstrated by comparison experiments with and without the NESC. With the NESC removed from the model bathymetry, the Gulf Stream remains a stable coherent jet much farther east than in the experiment with the NESC. The NESC is the leading factor destabilizing the Gulf Stream and, when it is not properly resolved by the model’s grid, its impact on the Gulf Stream’s pathway and variability is surprisingly large. A high-resolution bathymetry, which better resolves the New England seamounts (i.e., narrower and rising higher in the water column), leads to a tighter Gulf Stream mean path that better agrees with the observed path and a sea surface height variability distribution that is in excellent agreement with the observations.  more » « less
Award ID(s):
2123632 2038481
PAR ID:
10438399
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
53
Issue:
8
ISSN:
0022-3670
Format(s):
Medium: X Size: p. 1871-1886
Size(s):
p. 1871-1886
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10‐year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long‐lived rings (lifespan >150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short‐lived rings (lifespan <150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch‐off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch‐off rings. 
    more » « less
  2. Abstract Studies suggest a strong link between low‐frequency sea level variability in the South Atlantic Bight (SAB) and open ocean dynamics. However, the mechanisms driving this connection remain unclear. By analyzing a high‐resolution, three‐dimensional baroclinic ocean reanalysis, we identify a pathway that links open ocean dynamics to SAB coastal sea level variability through the shelf edge near Cape Hatteras. Gulf Stream meanders in this region induce sea level fluctuations that propagate along the entire SAB shelf. Using an idealized barotropic model, we further demonstrate that topographic waves mediate the propagation of the Gulf Stream signal onto the shelf. Moreover, the Gulf Stream variability is driven by zonal wind stress in the Northwest Atlantic, which is likely modulated by the North Atlantic Oscillation. These findings offer new insights into regional sea level prediction and contribute to broader climate research efforts. 
    more » « less
  3. Abstract The Gulf Stream system is dominated by strong mesoscale variability that can obscure any seasonal signals in Gulf Stream strength. Nevertheless, seasonal variability of the Gulf Stream is important for local weather and climate and can influence amplification of hurricane intensity and storm tracks. We investigate seasonal variability of the speed of the Gulf Stream after it detaches from Cape Hatteras, using high‐resolution along‐track altimeter data. The altimeter data show a significant seasonal cycle in the Gulf Stream axis speed, peaking in summer. The seasonal variability in the Gulf Stream axis velocity is related to changes in the local wind stress curl and changes in the density difference across the Gulf Stream. Wind forcing affects the Gulf Stream year‐round, while changes in the density difference have the largest impact in summer. Overall, changes in the wind stress curl and upper ocean density difference across the Gulf Stream can explain roughly 40% of the seasonal Gulf Stream speed variability in summer. 
    more » « less
  4. Abstract Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability inζis anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N andζchanges arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated withζ. This interpretation contrasts with past studies that understoodζand AMOC as being in geostrophic balance with one another. 
    more » « less
  5. Abstract Ocean variability is a dominant source of remote rainfall predictability, but in many cases the physical mechanisms driving this predictability are not fully understood. This study examines how ocean mesoscales (i.e., the Gulf Stream SST front) affect decadal Southeast US (SEUS) rainfall, arguing that the local imprint of large‐scale teleconnections is sensitive to resolved mesoscale features. Based on global coupled model experiments with eddying and eddy‐parameterizing ocean, we find that a resolved Gulf Stream improves localized rainfall and remote circulation response in the SEUS. The eddying model generally improves the air‐sea interactions in the Gulf Stream and the North Atlantic Subtropical High that modulate SEUS rainfall over decadal timescales. The eddy‐parameterizing simulation fails to capture the sharp SST gradient associated with the Gulf Stream and overestimates the role of tropical Pacific SST anomalies in the SEUS rainfall. 
    more » « less