skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polaris Project 2018: Vegetation biomass, plot characterization, point intercept, and thaw depth, Yukon-Kuskokwim Delta, Alaska.
{"Abstract":["This project is integrating scientific research in the Arctic with education and outreach, with a strong central focus on engaging undergraduate students and visiting faculty from groups that have had little involvement in Arctic science to date. The central element of the project is a month-long research expedition to the Yukon River Delta in Alaska. The expedition provides a deep intellectual and cultural immersion in the context of an authentic research experience that is paramount for "hooking" students and keeping them moving along the pipeline to careers as Arctic scientists. The overarching scientific issue that drives the research is the vulnerability and fate of ancient carbon stored in Arctic permafrost (permanently frozen ground). Widespread permafrost thaw is expected to occur this century, but large uncertainties remain in estimating the timing, magnitude, and form of carbon that will be released when thawed. Project participants are working in collaborative research groups to make fundamental scientific discoveries related to the vulnerability of permafrost carbon in the Yukon River Delta and the potential implications of permafrost thaw in this region for the global climate system.\n This data set includes vegetation biomass and elemental analysis, thaw depth, and point intercept results from the 2018 expedition."]}  more » « less
Award ID(s):
1915307
PAR ID:
10438454
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
Arctic fire vegetation carbon nitrogen Alaska
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["This project is integrating scientific research in the Arctic with education and outreach, with a strong central focus on engaging undergraduate students and visiting faculty from groups that have had little involvement in Arctic science to date. The central element of the project is a month-long research expedition to the Yukon River Delta in Alaska. The expedition provides a deep intellectual and cultural immersion in the context of an authentic research experience that is paramount for "hooking" students and keeping them moving along the pipeline to careers as Arctic scientists. The overarching scientific issue that drives the research is the vulnerability and fate of ancient carbon stored in Arctic permafrost (permanently frozen ground). Widespread permafrost thaw is expected to occur this century, but large uncertainties remain in estimating the timing, magnitude, and form of carbon that will be released when thawed. Project participants are working in collaborative research groups to make fundamental scientific discoveries related to the vulnerability of permafrost carbon in the Yukon River Delta and the potential implications of permafrost thaw in this region for the global climate system.\n This data set includes vegetation biomass and elemental analysis, thaw depth, and point intercept results from the 2019 expedition."]} 
    more » « less
  2. {"Abstract":["This project is integrating scientific research in the Arctic with education and outreach, with a strong central focus on engaging undergraduate students and visiting faculty from groups that have had little involvement in Arctic science to date. The central element of the project is a month-long research expedition to the Yukon River Delta in Alaska. The expedition provides a deep intellectual and cultural immersion in the context of an authentic research experience that is paramount for "hooking" students and keeping them moving along the pipeline to careers as Arctic scientists. The overarching scientific issue that drives the research is the vulnerability and fate of ancient carbon stored in Arctic permafrost (permanently frozen ground). Widespread permafrost thaw is expected to occur this century, but large uncertainties remain in estimating the timing, magnitude, and form of carbon that will be released when thawed. Project participants are working in collaborative research groups to make fundamental scientific discoveries related to the vulnerability of permafrost carbon in the Yukon River Delta and the potential implications of permafrost thaw in this region for the global climate system.\n This data set contains pressure, Photosynthetically Active Radiation (PAR), air temperature, wind direction, wind speed, wind gust speed, rain, relative humidity, soil moisture at 15 centimeter (cm) depth, and two measurements of soil temperature at 15 cm depth from the 2018 and 2019 expeditions."]} 
    more » « less
  3. Data from this study originate from the NSF (National Science Foundation) Polaris Project. The Polaris Project integrates scientific research in the Arctic-boreal region with education and outreach, with a primary focus on engaging and inspiring the next generation of scientists. The overarching scientific issue that drives the Polaris Project is the vulnerability and fate of ancient carbon stored in perennially frozen ground, permafrost. Although extensive permafrost thaw is expected to occur across the northern permafrost region this century, large uncertainties remain in the timing, magnitude, and form of carbon that will be released. Participants of the Polaris Project conducted field research in the Yukon-Kuskokwim Delta (YKD), collaborating to make fundamental scientific discoveries related to the transformation and fate of thawed permafrost carbon, and implications for global climate. This data set includes aquatic chemistry data from expeditions to the YKD during 2015–2019. Parameters measured include water temperature, pH, dissolved oxygen, conductivity, dissolved organic and inorganic carbon, nitrogen species, phosphorous, greenhouse gases, stables isotopes of carbon and water, optical properties of water, and fluxes of methane and carbon dioxide made in the field. These data were compiled and underwent quality assurance / quality control specifically for the scientific objectives of the manuscript published by Zolkos et al. (2022). Consequently, this dataset contains a modified version of Polaris Project YKD aquatic chemistry data previously published for 2015–2016 (http://doi.org/10.18739/A22804Z8M) and 2017 (http://doi.org/10.18739/A23775V7T). Data from 2018–2019 were not previously published. Therefore, users interested in the original datasets for 2015–2017 are encouraged to access them via the provided links, while users interested in the data and metadata specific to the associated manuscript by Zolkos et al. are encouraged to use this companion dataset. 
    more » « less
  4. The carbon stored in permafrost deposits represents the single largest soil carbon reservoir on Earth. Concerns about the instability and dynamics of this carbon reservoir during permafrost thaw associated with polar amplification of climate warming contribute a large part of the uncertainty in forecasting future climate. We have been studying the carbon dynamics of permafrost deposits contained in the floodplains of large Arctic rivers. Across Arctic floodplains, accelerating bank erosion can liberate permafrost organic carbon (OC) as carbon dioxide (CO2) or methane (CH4), and/or redeposit it in fluvial units. These different fates have very different implications for climate feedback. Determining OC stocks and their dynamics in Arctic floodplain cutbanks and point bars, as well as the OC load in fluvial transport, is essential to better understand the recycling and export of permafrost carbon. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin in Alaska: Beaver (65.700° North (N), 156.387° West (W)) and Huslia (66.362° N, 147.398° W). This dataset mainly reports OC contents for collected subsurface sediments in floodplains measured by elemental analyzer. The coupled mercury content can be found in Isabel et al., 2024 (https://doi.org/10.18739/A2RF5KH5J). 
    more » « less
  5. Abstract Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw‐induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw‐driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean‐atmosphere system and increasepCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate () sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact onpCO2. Calculations found that approximately 80% of in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover,34S/32S ratios,13C/12C ratios of dissolved IC, and sulfur X‐ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values ofpCO2over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values ofpCO2over timescales longer than carbonate compensation but shorter than the residence time of marine (∼107 yr). Furthermore, the absolute concentrations of and Mg2+in the Koyukuk River, as well as the ratios of and Mg2+to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale‐dependent feedback on warming. 
    more » « less