skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic Carbon Content in the Subsurface Sediments of Floodplains Across the Yukon River Basin, Alaska, 2022
The carbon stored in permafrost deposits represents the single largest soil carbon reservoir on Earth. Concerns about the instability and dynamics of this carbon reservoir during permafrost thaw associated with polar amplification of climate warming contribute a large part of the uncertainty in forecasting future climate. We have been studying the carbon dynamics of permafrost deposits contained in the floodplains of large Arctic rivers. Across Arctic floodplains, accelerating bank erosion can liberate permafrost organic carbon (OC) as carbon dioxide (CO2) or methane (CH4), and/or redeposit it in fluvial units. These different fates have very different implications for climate feedback. Determining OC stocks and their dynamics in Arctic floodplain cutbanks and point bars, as well as the OC load in fluvial transport, is essential to better understand the recycling and export of permafrost carbon. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin in Alaska: Beaver (65.700° North (N), 156.387° West (W)) and Huslia (66.362° N, 147.398° W). This dataset mainly reports OC contents for collected subsurface sediments in floodplains measured by elemental analyzer. The coupled mercury content can be found in Isabel et al., 2024 (https://doi.org/10.18739/A2RF5KH5J).  more » « less
Award ID(s):
2127444 2127442
PAR ID:
10521768
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
Permafrost Floodplain Organic carbon Yukon River
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to atmospheric circulation and preservation of organic matter, large amounts of mercury (Hg) are stored in permafrost regions. Due to rapid warming and thawing permafrost in the Arctic, this Hg may be released, potentially degrading water quality and impacting human health. River bank erosion in particular has the ability to quickly mobilize large amounts of Hg-rich floodplain sediments. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin: Beaver, Alaska (AK) (65.700 N, 156.387 W) and Huslia, AK (66.362N, 147.398 W). This dataset contains mercury contents for collected floodplain sediments measured by direct thermal decomposition. Sample metadata also includes information recorded in the field (location, visual grain size description, and sample collection depth) and collected post sample processing (water content and dry density). 
    more » « less
  2. Abstract Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ∼4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/−21ng THg g sediment−1and 39+16/−18ng THg g sediment−1for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2.0/−2.4Gg THg Pg C−1and 4.2+2.4/−2.9Gg THg Pg C−1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95+12/−47kg THg yr−1and 26+154/−13kg THg yr−1at Huslia and Beaver, respectively), but different fluxes out of the river via deposition in aggrading bars (60+40/−29kg THg yr−1and 10+5.3/−1.7kg THg yr−1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers. 
    more » « less
  3. Wymore, A.S. (Ed.)
    The loss of organic carbon (OC) from soils because of agriculture is well established. Where that carbon goes, far less so. Accelerated oxidation could lead to a net source of CO2 to the atmosphere. However eroded soil OC sequestered in alluvia and reservoirs could create a net sink for atmospheric CO2. The Intensively Managed Landscape—Critical Zone Observatory (IML-CZO) has provided an opportunity to study the fate of the eroded soil OC. A preliminary inventory of post-settlement sediment and associated OC accumulation has been made in the IML-CZO site in the Sangamon River Basin of Illinois. Significant stores of OC were found in downslope depressions, floodplain sedimentary deposits and a reservoir at the terminus of the Upper Sangamon Basin, Lake Decatur. Approximately 90% of the OC was trapped by the landscape. Carbon isotopic (δ13C) measurements of bank exposures and Lake Decatur sediments indicate that row crop soils with corn (C4 plant) isotopic signatures contribute to the sequestered C pools but are not the sole sources of OC. C-isotope and biomarker measurements of Lake Decatur sediments reveal the episodic nature of row crop soil OC transport, which appears to be facilitated by sequences of storm events. 
    more » « less
  4. Abstract Permafrost influences 25% of land in the Northern Hemisphere, where it stabilizes the ground beneath communities and infrastructure and sequesters carbon. However, the coevolution of permafrost, river dynamics, and vegetation in Arctic environments remains poorly understood. As rivers meander, they erode the floodplain at cutbanks and build new land through bar deposition, creating sequences of landforms with distinct formation ages. Here we mapped these sequences along the Koyukuk River floodplain, Alaska, analyzing permafrost occurrence, and landform and vegetation types. We used radiocarbon and optically stimulated luminescence (OSL) dating to develop a floodplain age map. Deposit ages ranged from modern to 10 ka, with more younger deposits near the modern channel. Permafrost rapidly reached 50% areal extent in all deposits older than 200 years then gradually increased up to ∼85% extent for deposits greater than 4 Kyr old. Permafrost extent correlated with increases in black spruce and wetland abundance, as well as increases in permafrost extent within wetland, and shrub and scrub vegetation classes. We developed an inverse model to constrain permafrost formation rate as a function of air temperature. Permafrost extent initially increased by ∼25% per century, in pace with vegetation succession, before decelerating to <10% per millennia as insulating overbank mud and moss slowly accumulated. Modern permafrost extent on the Koyukuk floodplain therefore reflects a dynamic balance between widespread, time‐varying permafrost formation and rapid, localized degradation due to cutbank erosion that might trigger a rapid loss of permafrost with climatic warming. 
    more » « less
  5. Beddoe, Riley; Karunaratne, Kumari (Ed.)
    Permafrost holds more than twice the amount of carbon currently in the atmosphere, but this large carbon reservoir is vulnerable to thaw and erosion under a rapidly changing Arctic climate. Convective storms are becoming increasingly common during Arctic summers and can amplify runoff and erosion. These extreme events, in concert with active layer deepening, may accelerate carbon loss from the Arctic landscape. However, we lack measurements of carbon fluxes during these events. Rivers are sensitive to physical, chemical, and hydrological perturbations, and thus are excellent systems for studying landscape responses to thunderstorms. We present observations from the Canning River, Alaska, which drains the northern Brooks Range and flows across a continuous permafrost landscape to the Beaufort Sea. During summer 2022 and 2023 field campaigns, we opportunistically monitored river discharge, sediment, and organic carbon fluxes during several thunderstorms. During one notable storm, river discharge nearly doubled from ~130 m3/s to ~240 m3/s, suspended sediment flux increased 70-fold, and the particulate organic carbon (POC) flux increased 90-fold relative to non-storm conditions. Taken together, the river exported ~16 metric tons of POC over one hour of this sustained event, not including the additional flux of woody debris. Furthermore, the dissolved organic carbon (DOC) flux nearly doubled. Although these thunderstorm-driven fluxes are short-lived (hours to days), they play an outsized role in exporting organic carbon from Arctic rivers. Understanding how these extreme events impact river water, sediment, and carbon dynamics will help predict how Arctic climate change will modify the global carbon cycle. 
    more » « less