Mulzer, Wolfgang; Phillips, Jeff M
(Ed.)
In the modular robot reconfiguration problem, we are given n cube-shaped modules (or robots) as well as two configurations, i.e., placements of the n modules so that their union is face-connected. The goal is to find a sequence of moves that reconfigures the modules from one configuration to the other using "sliding moves," in which a module slides over the face or edge of a neighboring module, maintaining connectivity of the configuration at all times. For many years it has been known that certain module configurations in this model require at least Ω(n²) moves to reconfigure between them. In this paper, we introduce the first universal reconfiguration algorithm - i.e., we show that any n-module configuration can reconfigure itself into any specified n-module configuration using just sliding moves. Our algorithm achieves reconfiguration in O(n²) moves, making it asymptotically tight. We also present a variation that reconfigures in-place, it ensures that throughout the reconfiguration process, all modules, except for one, will be contained in the union of the bounding boxes of the start and end configuration.
more »
« less
An official website of the United States government

