Small-scale flapping-wing micro air vehicles (FWMAVs) are an emerging robotic technology with many applications in areas including infrastructure monitoring and remote sensing. However, challenges such as inefficient energetics and decreased payload capacity preclude the useful implementation of FWMAVs. Insects serve as inspiration to FWMAV design owing to their energy efficiency, maneuverability, and capacity to hover. Still, the biomechanics of insects remain challenging to model, thereby limiting the translational design insights we can gather from their flight. In particular, it is not well-understood how wing flexibility impacts the energy requirements of flapping flight. In this work, we developed a simple model of an insect drive train consisting of a compliant thorax coupled to a flexible wing flapping with single-degree-of-freedom rotation in a fluid environment. We applied this model to quantify the energy required to actuate a flapping wing system with parameters based off a hawkmoth Manduca sexta. Despite its simplifications, the model predicts thorax displacement, wingtip deflection and peak aerodynamic force in proximity to what has been measured experimentally in flying moths. We found a flapping system with flexible wings requires 20% less energy than a flapping system with rigid wings while maintaining similar aerodynamic performance. Passive wing deformation increases the effective angle of rotation of the flexible wing, thereby reducing the maximum rotation angle at the base of the wing. We investigated the sensitivity of these results to parameter deviations and found that the energetic savings conferred by the flexible wing are robust over a wide range of parameters.
more »
« less
Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots
Mobile millimeter and centimeter scale robots often use smart composite manufacturing (SCM) for the construction of body components and mechanisms. The fabrication of SCM mechanisms requires laser machining and laminating flexible, adhesive, and structural materials into small-scale hinges, transmissions, and, ultimately, wings or legs. However, a fundamental limitation of SCM components is the plastic deformation and failure of flexures. In this work, we demonstrate that encasing SCM components in a soft silicone mold dramatically improves the durability of SCM flexure hinges and provides robustness to SCM components. We demonstrate this advance in the design of a flapping-wing robot that uses an underactuated compliant transmission fabricated with an inner SCM skeleton and exterior silicone mold. The transmission design is optimized to achieve desired wingstroke requirements and to allow for independent motion of each wing. We validate these design choices in bench-top tests, measuring transmission compliance, kinematics, and fatigue. We integrate the transmission with laminate wings and two types of actuation, demonstrating elastic energy exchange and limited lift-off capabilities. Lastly, we tested collision mitigation through flapping-wing experiments that obstructed the motion of a wing. These experiments demonstrate that an underactuated compliant transmission can provide resilience and robustness to flapping-wing robots.
more »
« less
- Award ID(s):
- 2100858
- NSF-PAR ID:
- 10438681
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 1489
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Flapping flight of animals has captured the interest of researchers due to their impressive flight capabilities across diverse environments including mountains, oceans, forests, and urban areas. Despite the significant progress made in understanding flapping flight, high-altitude flight as showcased by many migrating animals remains underexplored. At high-altitudes, air density is low, and it is challenging to produce lift. Here we demonstrate a first lift-off of a flapping wing robot in a low-density environment through wing size and motion scaling. Force measurements showed that the lift remained high at 0.14 N despite a 66% reduction of air density from the sea-level condition. The flapping amplitude increased from 148 to 233 degrees, while the pitch amplitude remained nearly constant at 38.2 degrees. The combined effect is that the flapping-wing robot benefited from the angle of attack that is characteristic of flying animals. Our results suggest that it is not a simple increase in the flapping frequency, but a coordinated increase in the wing size and reduction in flapping frequency enables the flight in lower density condition. The key mechanism is to preserve the passive rotations due to wing deformation, confirmed by a bioinspired scaling relationship. Our results highlight the feasibility of flight under a low-density, high-altitude environment due to leveraging unsteady aerodynamic mechanisms unique to flapping wings. We anticipate our experimental demonstration to be a starting point for more sophisticated flapping wing models and robots for autonomous multi-altitude sensing. Furthermore, it is a preliminary step towards flapping wing flight in the ultra-low density Martian atmosphere.more » « less
-
In most instances, flapping wing robots have emulated the “synchronous” actuation of insects in which the wingbeat timing is generated from a time-dependent, rhythmic signal. The internal dynamics of asynchronous insect flight muscle enable high-frequency, adaptive wingbeats with minimal direct neural control. In this paper, we investigate how the delayed stretch-activation (dSA) response of asynchronous insect flight muscle can be transformed into a feedback control law for flapping wing robots that results in stable limit cycle wingbeats. We first demonstrate - in theory and simulation - the mechanism by which asynchronous wingbeats self-excite. Then, we implement the feedback law on a dynamically-scaled robophysical model as well as on an insect-scale robotic flapping wing. Experiments on large- and small-scale robots demonstrate good agreement with the theory results and highlight how dSA parameters govern wingbeat amplitude and frequency. Lastly, we demonstrate that asynchronous actuation has several advantages over synchronous actuation schemes, including the ability to rapidly adapt or halt wingbeats in response to external loads or collisions through low-level feedback control.more » « less
-
Abstract In this paper, we first presented a four-bar linkage mechanism for actuating the wings in a flapping wing flying robot. After that, given the additional constraints imposed by the four-bar linkage, we parameterized the wing kinematics to provide sufficient control authority for stabilizing the system during 3D hovering. The four-bar linkage allows the motors to spin continuously in one direction while generating flapping motion on the wings. However, this mechanism constrains the flapping angle range which is a common control parameter in controlling such systems. To address this problem, we divided each wingbeat cycle into four variable-time segments which is an extension to previous work on split-cycle modulation using wing bias but allows the use of a constant flapping amplitude constraint for the wing kinematic. Finally, we developed an optimization framework to control the system for fast recovery while guaranteeing the stability. The results showed that the proposed control parameters are capable of creating symmetric and asymmetric motions between the two wings and, therefore can stabilize the hovering system with minimal actuation and flapping angle amplitude constraint.more » « less
-
Flapping flight dynamics is quite an intricate problem that is typically represented by a multi-body, multi-scale, nonlinear, time-varying dynamical system. The unduly simple modeling and analysis of such dynamics in the literature has long obstructed the discovery of some of the fascinating mechanisms that these flapping-wing creatures possess. Neglecting the wing inertial effects and directly averaging the dynamics over the flapping cycle are two major simplifying assumptions that have been extensively used in the literature of flapping flight balance and stability analysis. By relaxing these assumptions and formulating the multi-body dynamics of flapping-wing microair- vehicles in a differential-geometric-control framework, we reveal a vibrational stabilization mechanism that greatly contributes to the body pitch stabilization. The discovered vibrational stabilization mechanism is induced by the interaction between the fast oscillatory aerodynamic loads on the wings and the relatively slow body motion. This stabilizationmechanism provides an artificial stiffness (i.e., spring action) to the body rotation around its pitch axis. Such a spring action is similar to that of Kapitsa pendulum where the unstable inverted pendulum is stabilized through applying fast-enough periodic forcing. Such a phenomenon cannot be captured using the overly simplified modeling and analysis of flapping flight dynamics.more » « less