skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A surface mechanism for O 3 production with N 2 addition in dielectric barrier discharges
Abstract Ozone, O3, is a strong oxidizing agent often used for water purification. O3is typically produced in dielectric barrier discharges (DBDs) by electron-impact dissociation of O2, followed by three-body association reactions between O and O2. Previous studies on O3formation in low-temperature plasma DBDs have shown that O3concentrations can drop to nearly zero after continued operation, termed the ozone-zero phenomenon (OZP). Including small (<4%) admixtures of N2can suppress this phenomenon and increase the O3production relative to using pure O2in spite of power deposition being diverted from O2to N2and the production of nitrogen oxides, NxOy. The OZP is hypothesized to occur because O3is destroyed on the surfaces in contact with the plasma. Including N2in the gas mixture enables N atoms to occupy surface sites that would otherwise participate in O3destruction. The effect of N2in ozone-producing DBDs was computationally investigated using a global plasma chemistry model. A general surface reaction mechanism is proposed to explain the increase in O3production with N2admixtures. The mechanism includes O3formation and destruction on the surfaces, adsorption and recombination of O and N, desorption of O2and N2, and NOxreactions. Without these reactions on the surface, the density of O3monotonically decreases with increasing N2admixture due to power absorption by N2leading to the formation of nitrogen oxides. With N-based surface chemistry, the concentrations of O3are maximum with a few tenths of percent of N2depending on the O3destruction probability on the surface. The consequences of the surface chemistry on ozone production are less than the effect of gas temperature without surface processes. An increase in the O3density with N-based surface chemistry occurs when the surface destruction probability of O3or the surface roughness was decreased.  more » « less
Award ID(s):
2032604
PAR ID:
10438738
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Plasma Sources Science and Technology
Volume:
32
Issue:
8
ISSN:
0963-0252
Page Range / eLocation ID:
Article No. 085001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Professor Jian Zhen Yu (Ed.)
    using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) were used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to ≈ 2 × 106 radicals cm􀀀 3 s􀀀 1 and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazonia rainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols. 
    more » « less
  2. Abstract An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate species, nitrogen oxides (NOx), and SO2. Observed VOC mixing ratios were comparable to those measured in heavily polluted cities in the U.S. and China. The VOC source signatures suggest a strong influence from Oil and Natural Gas (O&NG) emissions with potentially large contributions from Liquified Petroleum Gas (LPG) sources as well. Consistently elevated concentrations of O3, PAN, and its rarely measured homologs peroxybenzoylic nitric anhydride (PBzN) and peroxyacrylic nitric anhydride (APAN) at the OPECE site indicate complex photochemistry in a heterogeneous VOC environment. Diagnostic 0‐D box model simulations are used to investigate the budgets of ROx(OH + HO2 + RO2), and the rate and efficiency of O3production. Model sensitivity calculations indicate that O3production at OPECE site is VOC limited in spring. This suggests that reduction in VOCs should be a priority for reducing O3, where production and fugitive emissions from O&NG provide an attractive target. While initial reductions in NOxmight increase O3production, reduction of NOxalong with VOCs will be a necessary step to achieve long‐term ozone reduction. 
    more » « less
  3. James J. Schauer (Ed.)
    The processes governing the temporal and spatial patterns of isoprene and monoterpenes emitted by a rainforest in the central Amazon region of Brazil is investigated using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) were used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to ≈ 2 × 106 radicals cm3 s-1 and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazoniarainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols. 
    more » « less
  4. Abstract Ambient ozone (O3) concentrations in Southeast Michigan (SEMI) can exceed the U.S. National Ambient Air Quality Standard. Despite past efforts to measure O3precursors and elucidate reaction mechanisms, changing emission patterns and atmospheric composition in SEMI warrant new measurements and updated mechanisms to understand the causes of observed O3exceedances. In this study, we examine the chemical drivers of O3exceedances in SEMI, based on the Phase I MOOSE (Michigan‐Ontario Ozone Source Experiment) field study performed during May to June 2021. A zero‐dimensional (0‐D) box model is constrained with measurement data of meteorology and trace gas concentrations. Box model sensitivity simulations suggest that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the volatile organic compounds (VOCs)‐ and nitrogen oxides (NOx)‐limited O3production regimes is 3.0 ± 0.3 in SEMI. The midday (12:00–16:00) averaged HCHO/NO2ratio during the MOOSE Phase I study is 1.62 ± 1.03, suggesting that O3production in SEMI is limited by VOC emissions. This finding implies that imposing stricter regulations on VOC emissions should be prioritized for the SEMI O3nonattainment area. This study, through its use of ground‐based HCHO/NO2ratios and box modeling to assess O3‐VOC‐NOxsensitivities, has significant implications for air quality policy and the design of effective O3pollution control strategies, especially in O3nonattainment areas. 
    more » « less
  5. Abstract A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+–O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+–Iand CHI2+–Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+–O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products. 
    more » « less