skip to main content


Title: Tunable capacitor for superconducting qubits using an InAs/InGaAs heterostructure
Abstract

Adoption of fast, parametric coupling elements has improved the performance of superconducting qubits, enabling recent demonstrations of quantum advantage in randomized sampling problems. The development of low loss, high contrast couplers is critical for scaling up these systems. We present a blueprint for a gate-tunable coupler realized with a two-dimensional electron gas in an InAs/InGaAs heterostructure. Rigorous numerical simulations of the semiconductor and high frequency electromagnetic behavior of the coupler and microwave circuitry yield an on/off ratio of more than one order of magnitude. We give an estimate of the dielectric-limited loss from the inclusion of the coupler in a two qubit system, with coupler coherences ranging from a few to tens of microseconds.

 
more » « less
NSF-PAR ID:
10438767
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
8
Issue:
4
ISSN:
2058-9565
Page Range / eLocation ID:
Article No. 045014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Silicon photonics is an emerging technology which, enabling nanoscale manipulation of light on chips, impacts areas as diverse as communications, computing, and sensing. Wavelength division multiplexing is commonly used to maximize throughput over a single optical channel by modulating multiple data streams on different wavelengths concurrently. Traditionally, wavelength (de)multiplexers are implemented as monolithic devices, separate from the grating coupler, used to couple light into the chip. This paper describes the design and measurement of a grating coupler demultiplexer—a single device which combines both light coupling and demultiplexing capabilities. The device was designed by means of a custom inverse design algorithm which leverages boundary integral Maxwell solvers of extremely rapid convergence as the mesh is refined. To the best of our knowledge, the fabricated device enjoys the lowest insertion loss reported for grating demultiplexers, small size, high splitting ratio, and low coupling-efficiency imbalance between ports, while meeting the fabricability constraints of a standard UV lithography process.

     
    more » « less
  2. We propose a nanogap-enhanced phase-change waveguide with silicon PIN heaters. Thanks to the enhanced light-matter interaction in the nanogap, the proposed structure exhibits strong attenuation (Δα = ∼35 dB/µm) and optical phase (Δneff = ∼1.2) modulation atλ =1550 nm when achieving complete phase transitions. We further investigate two active optical devices based on the proposed waveguide, including an electro-absorption modulator and a 1 × 2 directional-coupler optical switch. Finite-difference time-domain simulation of the proposed modulator shows a high extinction ratio of ∼17 dB at 1550 nm with an active segment of volume only ∼0.004λ3. By exploiting a directional coupler design, we present a 1 × 2 optical switch with an insertion loss of < 4 dB and a compact coupling length of ∼ 15 µm while maintaining small crosstalk less than −7.2 dB over an optical bandwidth of 50 nm. Thermal analysis shows that a 10 V pulse of 30 ns (1×1 modulator) and 55 ns (1×2 switch) in duration is required to raise the GST temperature of the phase-change waveguide above the melting temperature to induce the amorphization; however, the complete crystallization occurs by applying a 5 V pulse of 180 ns (1×1 modulator) and a 6 V pulse of 200 ns (1×2 switch), respectively.

     
    more » « less
  3. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly>10  dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.

     
    more » « less
  4. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10  dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers. 
    more » « less
  5. Beam-steering devices such as optical phased arrays (OPAs) are key components in the applications of solid-state Lidar and wireless communication. The traditional single-layer OPA results in a significant energy loss due to substrate leakage caused by the downward coupling from the grating coupler structure. In this work, we have investigated a structure based on a multi-layerSi3N4/SiO2platform that can form a 3D OPA to emit light from the edge of the device with high efficiency; a 2D converged out-coupling beam will be end-fired to the air. High efficiency and wide horizontal beam steering are demonstrated numerically, and the influence of vertical crosstalk, delay length, and number of waveguide layers are discussed, as well as the fabrication feasibility.

     
    more » « less