skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous observations of the surface energy budget and meteorology over the Arctic sea ice during MOSAiC
Abstract The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreakerR/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.  more » « less
Award ID(s):
1807496 1724551
PAR ID:
10438774
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines the annual cycle of the Surface Energy Budget (SEB) in the Beaufort‐Chukchi seas, focusing on the autumn transition. Shipboard measurements from NASA's Salinity and Stratification at the Sea Ice Edge (SASSIE) experiment (8 September–2 October 2022) and satellite flux analysis for the entire 2022 were utilized to provide a comprehensive perspective of the SEB's seasonal dynamics. An important finding is the alignment of SEB’s autumnal transition with the September 22 equinox, marking the onset of prolonged Arctic darkness. This transition involved a shift from the summertime radiative heating to cooling conditions, characterized by outgoing longwave radiation surpassing incoming solar radiation and a notable increase in synoptic turbulent latent and sensible heat flux variability. The increased turbulent heat fluxes after the equinox were associated with increased occurrences of short‐duration cold air outbreaks. These outbreaks seem to originate from cold mesoscale surface winds transitioning from cooling landmasses or ice caps to the warmer seas, driven by differential cooling rates between land/ice and ocean as solar irradiance declined. Turbulent heat losses, outpacing longwave emission by more than fivefold, accelerated ocean surface cooling in the subsequent 2 months, leading to the complete freeze‐up of the Beaufort‐Chukchi seas by late November. These findings underscore the substantial influence of astronomical seasons on the SEB, emphasizing their crucial role in Arctic climate dynamics. 
    more » « less
  2. Abstract Turbulent motions in the Arctic stable boundary layer are characterized by intermittency, but they are rarely investigated due to limited observations, in particular over the sea‐ice surface. In the present study, we explore the characteristics of turbulent intermittency over the Arctic sea‐ice surface using data collected during the Multidisciplinary drifting Observation for the Study of Arctic Climate expedition from October 2019 to September 2020. We first develop a new algorithm, which performs well in identifying the spectral gap over the Arctic sea‐ice surface. Then the characteristics of intermittency are investigated. It is found that the strength of intermittency increases under the conditions of light surface wind speed, small surface wind speed gradient, and strong surface air temperature gradient. The momentum flux, sensible heat flux, and latent heat flux calculated by raw eddy‐covariance fluctuations are overestimated by 3%, 10%, and 24%, respectively, because submesoscale motions are included. Furthermore, the characteristics of the atmospheric boundary layer structure under various intermittency conditions reveal that strong low‐level jets are favorable to surface turbulent motions that result in weak intermittency, while strong temperature inversions above the surface layer suppress surface turbulent motions and lead to strong intermittency. 
    more » « less
  3. This study evaluates the simulation of wintertime (15 October, 2019, to 15 March, 2020) statistics of the central Arctic near-surface atmosphere and surface energy budget observed during the MOSAiC campaign with short-term forecasts from 7 state-of-the-art operational and experimental forecast systems. Five of these systems are fully coupled ocean-sea ice-atmosphere models. Forecast systems need to simultaneously simulate the impact of radiative effects, turbulence, and precipitation processes on the surface energy budget and near-surface atmospheric conditions in order to produce useful forecasts of the Arctic system. This study focuses on processes unique to the Arctic, such as, the representation of liquid-bearing clouds at cold temperatures and the representation of a persistent stable boundary layer. It is found that contemporary models still struggle to maintain liquid water in clouds at cold temperatures. Given the simple balance between net longwave radiation, sensible heat flux, and conductive ground flux in the wintertime Arctic surface energy balance, a bias in one of these components manifests as a compensating bias in other terms. This study highlights the different manifestations of model bias and the potential implications on other terms. Three general types of challenges are found within the models evaluated: representing the radiative impact of clouds, representing the interaction of atmospheric heat fluxes with sub-surface fluxes (i.e., snow and ice properties), and representing the relationship between stability and turbulent heat fluxes. 
    more » « less
  4. Abstract Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic sea ice. We measured the topography on approximately a 0.5 km2drifting parcel of Arctic sea ice on 42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow accumulation) can be observed for time periods of up to six months. Usingin-situmeasurements, we have validated the vertical accuracy of the alignment to ± 0.011 m. This data collection and processing workflow is the culmination of several prior measurement campaigns and may be generally applied for repeat TLS measurements on drifting sea ice. We present a description of the data, a software package written to process and align these data, and the philosophy of the data processing. These data can be used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they can provide valuable context for co-located measurements. 
    more » « less
  5. Abstract Vertical profiles of temperature microstructure at 95 stations were obtained over the Beaufort shelf and shelfbreak in the southern Canada Basin during a November 2018 research cruise. Two methods for estimating the dissipation rates of temperature variance and turbulent kinetic energy were compared using this data set. Both methods require fitting a theoretical spectrum to observed temperature gradient spectra, but differ in their assumptions. The two methods agree for calculations of the dissipation rate of temperature variance, but not for that of turbulent kinetic energy. After applying a rigorous data rejection framework, estimates of turbulent diffusivity and heat flux are made across different depth ranges. The turbulent diffusivity of temperature is typically enhanced by about one order of magnitude in profiles on the shelf compared to near the shelfbreak, and similarly near the shelfbreak compared to profiles with bottom depth >1,000 m. Depth bin means are shown to vary depending on the averaging method (geometric means tend to be smaller than arithmetic means and maximum likelihood estimates). The statistical distributions of heat flux within the surface, cold halocline, and Atlantic water layer change with depth. Heat fluxes are typically <1 Wm−2, but are greater than 50 Wm−2in ∼8% of the overall data. These largest fluxes are located almost exclusively within the surface layer, where temperature gradients can be large. 
    more » « less