skip to main content

Title: Gas-phase grafting for the multifunctional surface modification of silicon quantum dots
Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene via thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
17385 to 17391
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hybrid materials comprised of inorganic quantum dots functionalized with small-molecule organic chromophores have emerged as promising materials for reshaping light's energy content. Quantum dots in these structures can serve as light harvesting antennas that absorb photons and pass their energy to molecules bound to their surface in the form of spin-triplet excitons. Energy passed in this manner can fuel upconversion schemes that use triplet fusion to convert infrared light into visible emission. Likewise, triplet excitons passed in the opposite direction, from molecules to quantum dots, can enable solar cells that use singlet fission to circumvent the Shockley–Queisser limit. Silicon QDs represent a key target for these hybrid materials due to silicon's biocompatibility and preeminence within the solar energy market. However, while triplet transfer from silicon QDs to molecules has been observed, no reports to date have shown evidence of energy moving in the reverse direction. Here, we address this gap by creating silicon QDs functionalized with perylene chromophores that exhibit bidirectional triplet exciton transfer. Using transient absorption, we find triplet transfer from silicon to perylene takes place over 4.2 μs while energy transfer in the reverse direction occurs two orders of magnitude faster, on a 22 ns timescale. To demonstrate this system's utility, we use it to create a photon upconversion system that generates blue emission at 475 nm using photons with wavelengths as long as 730 nm. Our work shows formation of covalent linkages between silicon and organic molecules can provide sufficient electronic coupling to allow efficient bidirectional triplet exchange, enabling new technologies for photon conversion. 
    more » « less
  2. Abstract

    Photon upconversion may have the highest impact in biological applications because incoming photons transparent to tissue can be combined to make visible light useful for photodynamic therapy and imaging. The ability to use semiconductor nanocrystals as light absorbers for photon upconversion is important because their strong absorption profiles are synthetically tunable. In particular, the use of earth‐abundant, environmentally benign silicon quantum dots (QDs) as light absorbers for photon upconversion is very attractive. In this work, the authors demonstrate a general strategy employing both physical and chemical barriers to achieve air‐stable fusion of triplet excitons photosensitized by silicon QDs, crucial to practical applications of photon upconversion. Gel permeation chromatography (GPC) and dynamic light scattering (DLS) show that thermal hydrosilylation critical for colloidal stability and efficient triplet energy transfer creates a polymeric barrier to oxygen. This kinetic barrier to oxygen arises from the presence of cross‐linked surfactants and is complemented by the sacrificial oxidation of silicon QDs itself. Photon upconversion lasted longer than 4 days with quantum yields (QYs) as high as 7.5% (out of a maximum of 50%) using Si QD light absorbers with diphenylanthracene in methyl oleate. Oil‐in‐water micelles are air‐stable for 2 days with absolute upconversion QYs of 5.5%.

    more » « less
  3. null (Ed.)
    The photophysics of silicon quantum dots (QDs) is not well understood despite their potential for many optoelectronic applications. One of the barriers to the study and widespread adoption of Si QDs is the difficulty in functionalizing their surface, to make, for example, a solution-processable electronically-active colloid. While thermal hydrosilylation of Si QDs is widely used, the high temperature typically needed may trigger undesirable side-effects, like uncontrolled polymerization of the terminal alkene. In this contribution, we show that this high-temperature method for installing aromatic and aliphatic ligands on non-thermal plasma-synthesized Si QDs can be replaced with a low-temperature, radical-initiated hydrosilylation method. Materials prepared via this low-temperature route perform similarly to those created via high-temperature thermal hydrosilylation when used in triplet fusion photon upconversion systems, suggesting the utility of low-temperature, radical-initiated methods for creating Si QDs with a range of functional behavior. 
    more » « less
  4. Most high-quality quantum dots (QDs) are synthesized in the organic phase, and are often coated with polymers for use in aqueous biological environments. QDs can exhibit fluorescence losses during phase transfer, but evaluating underlying mechanisms ( e.g. , oxidation, surface etching, loss of colloidal stability) can be challenging because of variation in synthesis methods. Here, fluorescence stability of QDs encapsulated in block co-polymer (BCP) micelles was investigated as a function of BCP terminal functionalization ( i.e. , –OH, –COOH, and –NH 2 groups) and synthesis method ( i.e. , electrohydrodynamic emulsification-mediated selfassembly (EE-SA), sonication, and manual shaking). Fluorescence losses, fluorescence intensity, energy spectra, and surface composition were assessed using spectrofluorometry and cathodoluminescence spectroscopy (CL) with integrated X-ray photoemission spectroscopy (XPS). QDs passivated using charged BCPs exhibited 50–80% lower fluorescence intensity than those displaying neutral groups ( e.g. , –OH), which CL/XPS revealed to result from oxidation of surface Cd to CdO. Fluorescence losses were higher for processes with slow formation speed, but minimized in the presence of poly(vinyl alcohol) (PVA) surfactant. These data suggest slower BCP aggregation kinetics rather than electrostatic chain repulsion facilitated QD oxidation. Thus, polymer coating method and BCP structure influence QD oxidation during phase transfer and should be selected to maximize fast aggregation kinetics. 
    more » « less
  5. Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly–based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.

    more » « less