skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial Intelligence to Aid Glaucoma Diagnosis and Monitoring: State of the Art and New Directions
Recent developments in the use of artificial intelligence in the diagnosis and monitoring of glaucoma are discussed. To set the context and fix terminology, a brief historic overview of artificial intelligence is provided, along with some fundamentals of statistical modeling. Next, recent applications of artificial intelligence techniques in glaucoma diagnosis and the monitoring of glaucoma progression are reviewed, including the classification of visual field images and the detection of glaucomatous change in retinal nerve fiber layer thickness. Current challenges in the direct application of artificial intelligence to further our understating of this disease are also outlined. The article also discusses how the combined use of mathematical modeling and artificial intelligence may help to address these challenges, along with stronger communication between data scientists and clinicians.  more » « less
Award ID(s):
1853222 2108665 2021192 1853303
PAR ID:
10438798
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Photonics
Volume:
9
Issue:
11
ISSN:
2304-6732
Page Range / eLocation ID:
810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Today’s manufacturing systems are becoming increasingly complex, dynamic, and connected. The factory operations face challenges of highly nonlinear and stochastic activity due to the countless uncertainties and interdependencies that exist. Recent developments in artificial intelligence (AI), especially Machine Learning (ML) have shown great potential to transform the manufacturing domain through advanced analytics tools for processing the vast amounts of manufacturing data generated, known as Big Data. The focus of this paper is threefold: (1) review the state-of-the-art applications of AI to representative manufacturing problems, (2) provide a systematic view for analyzing data and process dependencies at multiple levels that AI must comprehend, and (3) identify challenges and opportunities to not only further leverage AI for manufacturing, but also influence the future development of AI to better meet the needs of manufacturing. To satisfy these objectives, the paper adopts the hierarchical organization widely practiced in manufacturing plants in examining the interdependencies from the overall system level to the more detailed granular level of incoming material process streams. In doing so, the paper considers a wide range of topics from throughput and quality, supervisory control in human–robotic collaboration, process monitoring, diagnosis, and prognosis, finally to advances in materials engineering to achieve desired material property in process modeling and control. 
    more » « less
  2. Abstract Medical devices play a crucial role in modern healthcare, providing innovative solutions for diagnosing, preventing, monitoring, and treating ailments. Artificial Intelligence is transforming the field of medical devices, offering unprecedented opportunities through diagnostic accuracy, personalized treatment plans, and enhancing patient outcomes. This review outlines the applications of artificial intelligence-based medical devices in healthcare specialties, especially in dentistry, medical imaging, ophthalmology, mental health, autism spectrum disorder diagnosis, oncology, and general medicine. Specifically, the review highlights advancements such as improved diagnostic accuracy, tailored treatment planning, and enhanced clinical outcomes in the above-mentioned applications. Regulatory approval remains a key issue, where medical devices must be approved or cleared by the United States Food and Drug Administration to establish their safety and efficacy. The regulatory guidance pathway for artificial intelligence-based medical devices is presented and moreover the critical technical, ethical, and implementation challenges that must be addressed for large-scale adoption are discussed. The review concludes that the intersection of artificial intelligence with the medical device domain and internet-enabled or enhanced technology, such as biotechnology, nanotechnology, and personalized therapeutics, enables an enormous opportunity to accelerate customized and patient-centered care. By evaluating these advancements and challenges, the study aims to present insights into the future trajectory of smart medical technologies and their role in advancing personalized, patient-centered care. 
    more » « less
  3. Alterations in ocular blood flow have been identified as important risk factors for the onset and progression of numerous diseases of the eye. In particular, several population-based and longitudinal-based studies have provided compelling evidence of hemodynamic biomarkers as independent risk factors for ocular disease throughout several different geographic regions. Despite this evidence, the relative contribution of blood flow to ocular physiology and pathology in synergy with other risk factors and comorbidities (e.g., age, gender, race, diabetes and hypertension) remains uncertain. There is currently no gold standard for assessing all relevant vascular beds in the eye, and the heterogeneous vascular biomarkers derived from multiple ocular imaging technologies are non-interchangeable and difficult to interpret as a whole. As a result of these disease complexities and imaging limitations, standard statistical methods often yield inconsistent results across studies and are unable to quantify or explain a patient's overall risk for ocular disease. Combining mathematical modeling with artificial intelligence holds great promise for advancing data analysis in ophthalmology and enabling individualized risk assessment from diverse, multi-input clinical and demographic biomarkers. Mechanism-driven mathematical modeling makes virtual laboratories available to investigate pathogenic mechanisms, advance diagnostic ability and improve disease management. Artificial intelligence provides a novel method for utilizing a vast amount of data from a wide range of patient types to diagnose and monitor ocular disease. This article reviews the state of the art and major unanswered questions related to ocular vascular anatomy and physiology, ocular imaging techniques, clinical findings in glaucoma and other eye diseases, and mechanistic modeling predictions, while laying a path for integrating clinical observations with mathematical models and artificial intelligence. Viable alternatives for integrated data analysis are proposed that aim to overcome the limitations of standard statistical approaches and enable individually tailored precision medicine in ophthalmology. 
    more » « less
  4. Alterations in ocular blood flow have been identified as important risk factors for the onset and progression of numerous diseases of the eye. In particular, several population-based and longitudinal-based studies have provided compelling evidence of hemodynamic biomarkers as independent risk factors for ocular disease throughout several different geographic regions. Despite this evidence, the relative contribution of blood flow to ocular physiology and pathology in synergy with other risk factors and comorbidities (e.g., age, gender, race, diabetes and hypertension) remains uncertain. There is currently no gold standard for assessing all relevant vascular beds in the eye, and the heterogeneous vascular biomarkers derived from multiple ocular imaging technologies are non-interchangeable and difficult to interpret as a whole. As a result of these disease complexities and imaging limitations, standard statistical methods often yield inconsistent results across studies and are unable to quantify or explain a patient's overall risk for ocular disease. Combining mathematical modeling with artificial intelligence holds great promise for advancing data analysis in ophthalmology and enabling individualized risk assessment from diverse, multi-input clinical and demographic biomarkers. Mechanism-driven mathematical modeling makes virtual laboratories available to investigate pathogenic mechanisms, advance diagnostic ability and improve disease management. Artificial intelligence provides a novel method for utilizing a vast amount of data from a wide range of patient types to diagnose and monitor ocular disease. This article reviews the state of the art and major unanswered questions related to ocular vascular anatomy and physiology, ocular imaging techniques, clinical findings in glaucoma and other eye diseases, and mechanistic modeling predictions, while laying a path for integrating clinical observations with mathematical models and artificial intelligence. Viable alternatives for integrated data analysis are proposed that aim to overcome the limitations of standard statistical approaches and enable individually tailored precision medicine in ophthalmology. 
    more » « less
  5. The industry is experiencing significant changes due to artificial intelligence (AI) and the challenges of the energy transition. While some view these changes as threats, recent advances in AI offer unique opportunities, especially in the context of “digital twins” for subsurface monitoring and control. 
    more » « less