Abstract Maize inflorescence is a complex phenotype that involves the physical and developmental interplay of multiple traits. Given the evidence that genes could pleiotropically contribute to several of these traits, we used publicly available maize data to assess the ability of multivariate genome-wide association study (GWAS) approaches to identify pleiotropic quantitative trait loci (pQTL). Our analysis of 23 publicly available inflorescence and leaf-related traits in a diversity panel of n = 281 maize lines genotyped with 376,336 markers revealed that the two multivariate GWAS approaches we tested were capable of identifying pQTL in genomic regions coinciding with similar associations found in previous studies. We then conducted a parallel simulation study on the same individuals, where it was shown that multivariate GWAS approaches yielded a higher true-positive quantitative trait nucleotide (QTN) detection rate than comparable univariate approaches for all evaluated simulation settings except for when the correlated simulated traits had a heritability of 0.9. We therefore conclude that the implementation of state-of-the-art multivariate GWAS approaches is a useful tool for dissecting pleiotropy and their more widespread implementation could facilitate the discovery of genes and other biological mechanisms underlying maize inflorescence.
more »
« less
How Well Can Multivariate and Univariate GWAS Distinguish Between True and Spurious Pleiotropy?
Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon called pleiotropy, is facilitated by the increased availability of high-throughput genotypic and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of multivariate and univariate genome-wide association study (GWAS) models to distinguish between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs to be evaluated. Therefore, we used publicly available maize and soybean genotypic data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results suggest that multivariate and univariate GWAS should both be used to infer whether or not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we recommend that future studies use a combination of multivariate and univariate GWAS models, as both models could be useful for identifying and narrowing down candidate loci with potential pleiotropic effects for downstream biological experiments.
more »
« less
- Award ID(s):
- 1733606
- PAR ID:
- 10290583
- Date Published:
- Journal Name:
- Frontiers in Genetics
- Volume:
- 11
- ISSN:
- 1664-8021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Background Advances in genotyping and phenotyping techniques have enabled the acquisition of a great amount of data. Consequently, there is an interest in multivariate statistical analyses that identify genomic regions likely to contain causal mutations affecting multiple traits (i.e., pleiotropy). As the demand for multivariate analyses increases, it is imperative that optimal tools are available to assess their performance. To facilitate the testing and validation of these multivariate approaches, we developed simplePHENOTYPES, an R/CRAN package that simulates pleiotropy, partial pleiotropy, and spurious pleiotropy in a wide range of genetic architectures, including additive, dominance and epistatic models. Results We illustrate simplePHENOTYPES’ ability to simulate thousands of phenotypes in less than one minute. We then provide two vignettes illustrating how to simulate sets of correlated traits in simplePHENOTYPES. Finally, we demonstrate the use of results from simplePHENOTYPES in a standard GWAS software, as well as the equivalence of simulated phenotypes from simplePHENOTYPES and other packages with similar capabilities. Conclusions simplePHENOTYPES is a R/CRAN package that makes it possible to simulate multiple traits controlled by loci with varying degrees of pleiotropy. Its ability to interface with both commonly-used marker data formats and downstream quantitative genetics software and packages should facilitate a rigorous assessment of both existing and emerging statistical GWAS and GS approaches. simplePHENOTYPES is also available at https://github.com/samuelbfernandes/simplePHENOTYPES .more » « less
-
Abstract The ability to accurately quantify the simultaneous effect of multiple genomic loci on multiple traits is now possible due to current and emerging high‐throughput genotyping and phenotyping technologies. To date, most efforts to quantify these genotype‐to‐phenotype relationships have focused on either multi‐trait models that test a single marker at a time or multi‐locus models that quantify associations with a single trait. Therefore, the purpose of this study was to compare the performance of a multi‐trait, multi‐locus stepwise (MSTEP) model selection procedure we developed to (a) a commonly used multi‐trait single‐locus model and (b) a univariate multi‐locus model. We used real marker data in maize (Zea maysL.) and soybean (Glycine maxL.) to simulate multiple traits controlled by various combinations of pleiotropic and nonpleiotropic quantitative trait nucleotides (QTNs). In general, we found that both multi‐trait models outperformed the univariate multi‐locus model, especially when analyzing a trait of low heritability. For traits controlled by either a combination of pleiotropic and nonpleiotropic QTNs or a large number of QTNs (i.e., 50), our MSTEP model often outperformed at least one of the two alternative models. When applied to the analysis of two tocochromanol‐related traits in maize grain, MSTEP identified the same peak‐associated marker that has been reported in a previous study. We therefore conclude that MSTEP is a useful addition to the suite of statistical models that are commonly used to gain insight into the genetic architecture of agronomically important traits.more » « less
-
Pleiotropy may affect the maintenance of cooperation by limiting cheater mutants if such mutants lose other important traits. If pleiotropy limits cheaters, selection may favor cooperation loci that are more pleiotropic. However, the same should not be true for private loci with functions unrelated to cooperation. Pleiotropy in cooperative loci has mostly been studied with single loci and has not been measured on a wide scale or compared to a suitable set of control loci with private functions. I remedy this gap by comparing genomic measures of pleiotropy in previously identified cooperative and private loci in Pseudomonas aeruginosa. I found that cooperative loci in P. aeruginosa tended to be more pleiotropic than private loci according to the number of protein–protein interactions, the number of gene ontology terms, and gene expression specificity. These results show that pleiotropy may be a general way to limit cheating and that cooperation may shape pleiotropy in the genome.more » « less
-
Abstract An early event in plant organogenesis is establishment of a boundary between the stem cell containing meristem and differentiating lateral organ. In maize (Zea mays), evidence suggests a common gene network functions at boundaries of distinct organs and contributes to pleiotropy between leaf angle and tassel branch number, two agronomic traits. To uncover regulatory variation at the nexus of these two traits, we use regulatory network topologies derived from specific developmental contexts to guide multivariate genome-wide association analyses. In addition to defining network plasticity around core pleiotropic loci, we identify new transcription factors that contribute to phenotypic variation in canopy architecture, and structural variation that contributes tocis-regulatory control of pleiotropy between tassel branching and leaf angle across maize diversity. Results demonstrate the power of informing statistical genetics with context-specific developmental networks to pinpoint pleiotropic loci and theircis-regulatory components, which can be used to fine-tune plant architecture for crop improvement.more » « less
An official website of the United States government

