skip to main content

Title: Dataset: Impact of salinization on lake stratification and spring mixing v1.0 L&O Letters

Scripts, model configurations and outputs to process the data and recreate the figures from Ladwig, R., Rock, L.A, Dugan, H.A. (-): Impact of salinization on lake stratification and spring mixing. This repository includes the setup and output from the lake model ensemble (GLM, GOTM, Simstrat) ran on the lakes Mendota and Monona. Scripts to run the models are located under /numerical and the scripts to process the results for the discussion of the paper are in the top main repository. The scripts to derive the theoretical solution are located under /analytical. Buoy monitoring data are located under /fieldmonitoring. The final figures are located under /figs_HD.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Edition / Version:
Subject(s) / Keyword(s):
["lake modeling","salinization","GLM","GOTM","Simstrat","chloride"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This repository includes the setup and output from the analysis ran on Lake Mendota to explore the trophic cascade caused by invasion of spiny water flea in 2010. Scripts to run the model are located under /src, and the processed results for the discussion of the paper are located under /data_processed.

    more » « less
  2. Data files were used in support of the research paper titled “Mitigating RF Jamming Attacks at the Physical Layer with Machine Learning" which has been submitted to the IET Communications journal.


    All data was collected using the SDR implementation shown here: Particularly for antenna state selection, the files developed for this paper are located in 'dragonradio/scripts/:'

    • '': class used to defined the antenna state selection algorithm
    • '': SDR implementation for normal radio operation with reconfigurable antenna
    • '': SDR implementation for hyperparameter tunning
    • '': SDR implementation for omnidirectional mode only


    Authors: Marko Jacovic, Xaime Rivas Rey, Geoffrey Mainland, Kapil R. Dandekar


    Top-level directories and content will be described below. Detailed descriptions of experiments performed are provided in the paper.


    classifier_training: files used for training classifiers that are integrated into SDR platform

    • 'logs-8-18' directory contains OTA SDR collected log files for each jammer type and under normal operation (including congested and weaklink states)
    • '' is the main parser for training the classifiers
    • 'trainedClassifiers' contains the output classifiers generated by ''

    post_processing_classifier: contains logs of online classifier outputs and processing script

    • 'class' directory contains .csv logs of each RTE and OTA experiment for each jamming and operation scenario
    • '' parses the log files and provides classification report and confusion matrix for each multi-class and binary classifiers for each observed scenario - found in 'results->classifier_performance'

    post_processing_mgen: contains MGEN receiver logs and parser

    • 'configs' contains JSON files to be used with parser for each experiment
    • 'mgenLogs' contains MGEN receiver logs for each OTA and RTE experiment described. Within each experiment logs are separated by 'mit' for mitigation used, 'nj' for no jammer, and 'noMit' for no mitigation technique used. File names take the form *_cj_* for constant jammer, *_pj_* for periodic jammer, *_rj_* for reactive jammer, and *_nj_* for no jammer. Performance figures are found in 'results->mitigation_performance'

    ray_tracing_emulation: contains files related to Drexel area, Art Museum, and UAV Drexel area validation RTE studies.

    • Directory contains detailed 'readme.txt' for understanding.
    • Please note: the processing files and data logs present in 'validation' folder were developed by Wolfe et al. and should be cited as such, unless explicitly stated differently. 
      • S. Wolfe, S. Begashaw, Y. Liu and K. R. Dandekar, "Adaptive Link Optimization for 802.11 UAV Uplink Using a Reconfigurable Antenna," MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp. 1-6, doi: 10.1109/MILCOM.2018.8599696.

    results: contains results obtained from study

    • 'classifier_performance' contains .txt files summarizing binary and multi-class performance of online SDR system. Files obtained using 'post_processing_classifier.'
    • 'mitigation_performance' contains figures generated by 'post_processing_mgen.'
    • 'validation' contains RTE and OTA performance comparison obtained by 'ray_tracing_emulation->validation->matlab->outdoor_hover_plots.m'

    tuning_parameter_study: contains the OTA log files for antenna state selection hyperparameter study

    • 'dataCollect' contains a folder for each jammer considered in the study, and inside each folder there is a CSV file corresponding to a different configuration of the learning parameters of the reconfigurable antenna. The configuration selected was the one that performed the best across all these experiments and is described in the paper.
    • 'data_summary.txt'this file contains the summaries from all the CSV files for convenience.
    more » « less
  3. This data set for the manuscript entitled "Design of Peptides that Fold and Self-Assemble on Graphite" includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.

    Version: 2.0

    Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.

    Conventions Used in These Files

    Structure Files
    - graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass), as well as definitions of bonds, angles, dihedrals, and impropers for each dipeptide.)

    - graph_*.pdb or sol_*.pdb (initial coordinates before equilibration)
    - repart_*.psf (same as the above psf files, but the masses of non-water hydrogen atoms have been repartitioned by VMD script repartitionMass.tcl)
    - freeTop_*.pdb (same as the above pdb files, but the carbons of the lower graphene layer have been placed at a single z value and marked for restraints in NAMD)
    - amber_*.prmtop (combined topology and parameter files for Amber force field simulations)
    - repart_amber_*.prmtop (same as the above prmtop files, but the masses of non-water hydrogen atoms have been repartitioned by ParmEd)

    Force Field Parameters
    CHARMM format parameter files:
    - par_all36m_prot.prm (CHARMM36m FF for proteins)
    - par_all36_cgenff_no_nbfix.prm (CGenFF v4.4 for graphene) The NBFIX parameters are commented out since they are only needed for aromatic halogens and we use only the CG2R61 type for graphene.
    - toppar_water_ions_prot_cgenff.str (CHARMM water and ions with NBFIX parameters needed for protein and CGenFF included and others commented out)

    Template NAMD Configuration Files
    These contain the most commonly used simulation parameters. They are called by the other NAMD configuration files (which are in the namd/ subdirectory):
    - template_min.namd (minimization)
    - template_eq.namd (NPT equilibration with lower graphene fixed)
    - template_abf.namd (for adaptive biasing force)

    - namd/min_*.0.namd

    - namd/eq_*.0.namd

    Adaptive biasing force calculations
    - namd/eabfZRest7_graph_chp1404.0.namd
    - namd/eabfZRest7_graph_chp1404.1.namd (continuation of eabfZRest7_graph_chp1404.0.namd)

    Log Files
    For each NAMD configuration file given in the last two sections, there is a log file with the same prefix, which gives the text output of NAMD. For instance, the output of namd/eabfZRest7_graph_chp1404.0.namd is eabfZRest7_graph_chp1404.0.log.

    Simulation Output
    The simulation output files (which match the names of the NAMD configuration files) are in the output/ directory. Files with the extensions .coor, .vel, and .xsc are coordinates in NAMD binary format, velocities in NAMD binary format, and extended system information (including cell size) in text format. Files with the extension .dcd give the trajectory of the atomic coorinates over time (and also include system cell information). Due to storage limitations, large DCD files have been omitted or replaced with new DCD files having the prefix stride50_ including only every 50 frames. The time between frames in these files is 50 * 50000 steps/frame * 4 fs/step = 10 ns. The system cell trajectory is also included for the NPT runs are output/eq_*.xst.

    Files with the .sh extension can be found throughout. These usually provide the highest level control for submission of simulations and analysis. Look to these as a guide to what is happening. If there are scripts with step1_*.sh and step2_*.sh, they are intended to be run in order, with step1_*.sh first.


    The directory contents are as follows. The directories Sim_Figure-1 and Sim_Figure-8 include README.txt files that describe the files and naming conventions used throughout this data set.

    Sim_Figure-1: Simulations of N-acetylated C-amidated amino acids (Ac-X-NHMe) at the graphite–water interface.

    Sim_Figure-2: Simulations of different peptide designs (including acyclic, disulfide cyclized, and N-to-C cyclized) at the graphite–water interface.

    Sim_Figure-3: MM-GBSA calculations of different peptide sequences for a folded conformation and 5 misfolded/unfolded conformations.

    Sim_Figure-4: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.

    Sim_Figure-5: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 295 K.

    Sim_Figure-5_replica: Temperature replica exchange molecular dynamics simulations for the peptide cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) with 20 replicas for temperatures from 295 to 454 K.

    Sim_Figure-6: Simulation of the peptide molecule cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) in free solution (no graphite).

    Sim_Figure-7: Free energy calculations for folding, adsorption, and pairing for the peptide CHP1404 (sequence: cyc(GTGSGTG-GPGG-GCGTGTG-SGPG)). For folding, we calculate the PMF as function of RMSD by replica-exchange umbrella sampling (in the subdirectory Folding_CHP1404_Graphene/). We make the same calculation in solution, which required 3 seperate replica-exchange umbrella sampling calculations (in the subdirectory Folding_CHP1404_Solution/). Both PMF of RMSD calculations for the scrambled peptide are in Folding_scram1404/. For adsorption, calculation of the PMF for the orientational restraints and the calculation of the PMF along z (the distance between the graphene sheet and the center of mass of the peptide) are in Adsorption_CHP1404/ and Adsorption_scram1404/. The actual calculation of the free energy is done by a shell script ("") in the 1_free_energy/ subsubdirectory. Processing of the PMFs must be done first in the 0_pmf/ subsubdirectory. Finally, files for free energy calculations of pair formation for CHP1404 are found in the Pair/ subdirectory.

    Sim_Figure-8: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) where the peptides are far above the graphene–water interface in the initial configuration.

    Sim_Figure-9: Two replicates of a simulation of nine peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.

    Sim_Figure-9_scrambled: Two replicates of a simulation of nine peptide molecules with the control sequence cyc(GGTPTTGGGGGGSGGPSGTGGC) at the graphite–water interface at 370 K.

    Sim_Figure-10: Adaptive biasing for calculation of the free energy of the folded peptide as a function of the angle between its long axis and the zigzag directions of the underlying graphene sheet.


    This material is based upon work supported by the US National Science Foundation under grant no. DMR-1945589. A majority of the computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CHE-1726332, CNS-1006860, EPS-1006860, and EPS-0919443. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, through allocation BIO200030. 
    more » « less
  4. null (Ed.)
    Datasets are often derived by manipulating raw data with statistical software packages. The derivation of a dataset must be recorded in terms of both the raw input and the manipulations applied to it. Statistics packages typically provide limited help in documenting provenance for the resulting derived data. At best, the operations performed by the statistical package are described in a script. Disparate representations make these scripts hard to understand for users. To address these challenges, we created Continuous Capture of Metadata (C2Metadata), a system to capture data transformations in scripts for statistical packages and represent it as metadata in a standard format that is easy to understand. We do so by devising a Structured Data Transformation Algebra (SDTA), which uses a small set of algebraic operators to express a large fraction of data manipulation performed in practice. We then implement SDTA, inspired by relational algebra, in a data transformation specification language we call SDTL. In this demonstration, we showcase C2Metadata’s capture of data transformations from a pool of sample transformation scripts in at least two languages: SPSS®and Stata®(SAS®and R are under development), for social science data in a large academic repository. We will allow the audience to explore C2Metadata using a web-based interface, visualize the intermediate steps and trace the provenance and changes of data at different levels for better understanding of the process. 
    more » « less
  5. This dataset includes model configurations, scripts and outputs to process and recreate the outputs from Ladwig et al. (2021): Long-term Change in Metabolism Phenology across North-Temperate Lakes. The provided scripts will process the input data from various sources, as well as recreate the figures from the manuscript. Further, all output data from the metabolism models of Allequash, Big Muskellunge, Crystal, Fish, Mendota, Monona, Sparkling and Trout are included. 
    more » « less