skip to main content


Title: Dataset: The aftermath of a trophic cascade: Increased anoxia following invasive species introduction of a eutrophic lake

This repository includes the setup and output from the analysis ran on Lake Mendota to explore the trophic cascade caused by invasion of spiny water flea in 2010. Scripts to run the model are located under /src, and the processed results for the discussion of the paper are located under /data_processed.

 
more » « less
Award ID(s):
1759865
NSF-PAR ID:
10439097
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
v0.1
Subject(s) / Keyword(s):
["invasive species","phytoplankton","anoxia","food web","trophic cascade","phenology"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scripts, model configurations and outputs to process the data and recreate the figures from Ladwig, R., Rock, L.A, Dugan, H.A. (-): Impact of salinization on lake stratification and spring mixing. This repository includes the setup and output from the lake model ensemble (GLM, GOTM, Simstrat) ran on the lakes Mendota and Monona. Scripts to run the models are located under /numerical and the scripts to process the results for the discussion of the paper are in the top main repository. The scripts to derive the theoretical solution are located under /analytical. Buoy monitoring data are located under /fieldmonitoring. The final figures are located under /figs_HD.

     
    more » « less
  2. Abstract Key points

    There are more exonic regulatory sequences in the human genome than originally thought.

    Exonic transcription factor binding sites are more likely under negative selection or positive selection than counterpart nonregulatory sequences.

    Exonic transcription factor binding sites tend to be located in genome sequences that encode less critical loops in protein structures, or in less critical parts in 5′ and 3′ untranslated regions.

     
    more » « less
  3. Abstract Aim

    Island biotas face an array of unique challenges under global change. Monitoring and research efforts, however, have been hindered by the large number of islands, their broad distribution and geographical isolation. Global citizen‐science initiatives have the potential to address these deficiencies. Here, we determine how the eBird citizen‐science programme is currently sampling island bird assemblages annually and how these patterns are developing over time.

    Location

    Global.

    Taxa

    Birds.

    Methods

    We compiled occurrence information of non‐marine bird species across the world's islands (n = 21,813) over an 18‐year period (2002–2019) from eBird. We estimated annual survey completeness and species richness across islands, which we examined in relation to six geographical and four climatic features.

    Results

    eBird contained bird occurrence information forca. 20% of the world's islands (n = 4,205) withca. 8% classified as well surveyed annually (n = 1,644). eBird participants tended to survey larger islands that were more distant from the mainland. These islands had lower proximity to other islands and contained a broader range of elevations. Temperature, precipitation and temperature seasonality were at intermediate levels. Precipitation seasonality was at low and intermediate levels. Islands located between 10 and 60° N latitude and 20 and 40° S latitude were overrepresented, and islands located in Southeast Asia were underrepresented. From 2002 to 2019, the number of islands surveyed annually increased byca. 96.4 islands/year. During this period, island size decreased, distance from mainland did not change, proximity to other islands increased and elevation range decreased.

    Main conclusions

    The eBird programme tends to survey larger islands containing intermediate climates that are more isolated from the mainland and other islands. These findings provide a framework to support the informed application of the eBird database in avian island biogeography. Our findings emphasize citizen science as an empirical resource to support long‐term ecological research, conservation and monitoring efforts across remote regions of the globe.

     
    more » « less
  4. The exact coronal origin of the slow-speed solar wind has been under debate for decades in the Heliophysics community. Besides the solar wind speed, the heavy ion composition, including the elemental abundances and charge state ratios, are widely used as diagnostic tool to investigate the coronal origins of the slow wind. In this study, we recognize a subset of slow speed solar wind that is located on the upper boundary of the data distribution in the O7+/O6+ versus C6+/C5+ plot (O-C plot). In addition, in this wind the elemental abundances relative to protons, such as N/P, O/P, Ne/P, Mg/P, Si/P, S/P, Fe/P, He/P, and C/P are systemically depleted. We compare these winds (“upper depleted wind” or UDW hereafter) with the slow winds that are located in the main stream of the O-C plot and possess comparable Carbon abundance range as the depletion wind (“normal-depletion-wind”, or NDW hereafter). We find that the proton density in the UDW is about 27.5% lower than in the NDW. Charge state ratios of O7+/O6+, O7+/O, and O8+/O are decreased by 64.4%, 54.5%, and 52.1%, respectively. The occurrence rate of these UDW is anti-correlated with solar cycle. By tracing the wind along PFSS field lines back to the Sun, we find that the coronal origins of the UDW are more likely associated with quiet Sun regions, while the NDW are mainly associated with active regions and HCS-streamer. 
    more » « less
  5. Abstract Aims

    The productivity–plant diversity relationship is a central subject in ecology under debate for decades. Anthropogenic disturbances have been demonstrated to affect productivity and plant diversity. However, the impact of disturbances on the productivity–diversity relationship is poorly understood.

    Location

    An old‐field located at the Touch of Nature Environmental Center in Jackson County, Illinois, USA.

    Methods

    A manipulative experiment with fertilizer (unfertilized, fertilized annually, fertilized every five years) and mowing (unmowed, mowed in spring only, mowed in spring and fall) in a successional old‐field began in 1996 to examine disturbance effects on above‐ground net primary productivity (ANPP)–plant diversity relationships. Taxonomic (species richness, T0) and phylogenetic (net relatedness index, NRI) diversity were selected as potential plant diversity metrics.

    Results

    A unimodal relationship of ANPP with T0 and a negative relationship between ANPP and NRI were found across all treatments and years in this study, but individual years showed different patterns. Fertilization did not affect T0, NRI, and ANPP, whereas mowing stimulated T0 and ANPP but reduced NRI (i.e., increasing phylogenetic diversity) across all survey years. New colonists, especially exotic species introduced under mowing, but not locally extinct species, were more distantly related to resident species than by chance, implying that invasion of exotic species contributes to phylogenetic overdispersion of community assembly in the old‐field. However, the patterns of the unimodal relationship of ANPP with T0 and the negative correlation between ANPP and NRI did not change under fertilization or mowing in this study.

    Conclusions

    Anthropogenic disturbances alter productivity and different dimensions of plant diversity, but do not change the patterns of the productivity–diversity relationships. Our findings highlight the robust relationship between productivity and diversity providing empirical support for productivity as a powerful predictor of plant diversity under intensified human activities.

     
    more » « less