skip to main content


Title: Lake thermal structure drives inter-annual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Dataset to run a 37-year simulation (1979-2015) of the Lake Mendota lake ecosystem using the vertical 1D GLM-AED2 model. The focus of this modeling study is on determining the drivers of year-to-year variability in the spatial and temporal extent of hypolimnetic anoxia.  more » « less
Award ID(s):
1759865
NSF-PAR ID:
10439096
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-resolution terrestrial records of Holocene climate from Southern California are scarce. Moreover, there are no records of Pacific Decadal Oscillation (PDO) variability, a major driver of decadal to multi-decadal climate variability for the region, older than 1,000 years. Recent research on Lake Elsinore, however, has shown that the lake’s sediments hold excellent potential for paleoenvironmental analysis and reconstruction. New 1-cm contiguous grain size data reveal a more complex Holocene climate history for Southern California than previously recognized at the site. A modern comparison between the twentieth century PDO index, lake level change, San Jacinto River discharge, and percent sand suggests that sand content is a reasonable, qualitative proxy for PDO-related, hydrologic variability at both multi-decadal-to-centennial as well as event (i.e. storm) timescales. A depositional model is proposed to explain the sand-hydrologic proxy. The sand-hydrologic proxy data reveal nine centennial-scale intervals of wet and dry climate throughout the Holocene. Percent total sand values >1.5 standard deviation above the 150–9,700 cal year BP average are frequent between 9,700 and 3,200 cal year BP (n = 41), but they are rare from 3,200 to 150 cal year BP (n = 6). This disparity is interpreted as a change in the frequency of exceptionally wet (high discharge) years and/or changes in large storm activity. A comparison to other regional hydrologic proxies (10 sites) shows more then occasional similarities across the region (i.e. 6 of 9 Elsinore wet intervals are present at >50% of the comparison sites). Only the early Holocene and the Little Ice Age intervals, however, are interpreted consistently across the region as uniformly wet (≥80% of the comparison sites). A comparison to two ENSO reconstructions indicates little, if any, correlation to the Elsinore data, suggesting that ENSO variability is not the predominant forcing of Holocene climate in Southern California. 
    more » « less
  2. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents phytoplankton community samples (pooled epilimnion and hypolimnion samples representative of 7 m water column) both under-ice and during some shoulder-season (open water) dates. Samples were collected into amber bottles and preserved with Lugol's solution before they were sent to Phycotech Inc. (St. Joseph MI, USA) for phytoplankton taxonomic identification and quantification. 
    more » « less
  3. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents under ice zooplankton community samples (integrated tows at depths of 7 m) and some shoulder-season (open water) zooplankton community samples. Zooplankton samples were preserved in 90% ethanol and later processed to determine taxonomic classification at the species-level, density (individuals / L), and average length (mm). 
    more » « less
  4. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents under ice zooplankton community samples (integrated tows at depths of 7 m) and some shoulder-season (open water) zooplankton community samples. Zooplankton samples were preserved in 90% ethanol and later processed to determine taxonomic classification at the species-level, density (individuals / L), and average length (mm). 
    more » « less
  5. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents chlorophyll, light, and high frequency buoy data collected from this project. Related datasets are: https://doi.org/10.6073/pasta/962fa57959ff9828eb6f1cbda79b82c0 https://doi.org/10.6073/pasta/f6e271634a04819e25bc7c913cd67155 https://doi.org/10.6073/pasta/9a26e819522152e878d802df76cf90d7 
    more » « less