skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in prey body size differentially reduces predation risk across predator and prey abundances
Trophic interactions underpin the structure of ecological communities by describing the rates at which consumers exploit their resources. The rates at which predators consume their prey are influenced by prey traits, with many species inducing defensive modifications to prey traits following the threat of predation. Here we use different clonal lines of the protist Paramecium being consumed by Stenostomum predators to highlight how differences in prey traits impact rates of predation. Clonal lines differed in their body width traits, and in their ability to induce changes in body width. By using a factorial cross of predator and prey abundances for different clonal lines we demonstrate how evolutionary or induced alterations in prey traits can impact the relative threat of predation. Our experiments show how interference among predators impacts predation rate, and how increased body width increased predator handling times. Given that reductions in the strength of interspecific interactions are associated with increased levels of overall community stability, our results indicate how individual level changes may scale up to impact whole communities  more » « less
Award ID(s):
1916610
PAR ID:
10439103
Author(s) / Creator(s):
; ;
Editor(s):
Subject Editor: Gregor Kalinkat Editor-in-Chief: Dries Bonte
Date Published:
Journal Name:
Oikos
ISSN:
0030-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Predator and prey traits are important determinants of the outcomes of trophic interactions. In turn, the outcomes of trophic interactions shape predator and prey trait evolution. How species' traits respond to selection from trophic interactions depends crucially on whether and how heritable species' traits are and their genetic correlations. Of the many traits influencing the outcomes of trophic interactions, body size and movement traits have emerged as key traits. Yet, how these traits shape and are shaped by trophic interactions is unclear, as few studies have simultaneously measured the impacts of these traits on the outcomes of trophic interactions, their heritability, and their correlations within the same system.We used outcrossed lines of the ciliate protistParamecium caudatumfrom natural populations to examine variation in morphology and movement behaviour, the heritability of that variation, and its effects onParameciumsusceptibility to predation by the copepodMacrocyclops albidus.We found that theParameciumlines exhibited heritable variation in body size and movement traits. In contrast to expectations from allometric relationships, body size and movement speed showed little covariance among clonal lines. The proportion ofParameciumconsumed by copepods was positively associated withParameciumbody size and velocity but with an interaction such that greater velocities led to greater predation risk for large body‐sized paramecia but did not alter predation risk for smaller paramecia. The proportion of paramecia consumed was not related to copepod body size. These patterns of predation risk and heritable trait variation in paramecia suggest that copepod predation may act as a selective force operating independently on movement and body size and generating the strongest selection against large, high‐velocity paramecia.Our results illustrate how ecology and genetics can shape potential natural selection on prey traits through the outcomes of trophic interactions. Further simultaneous measures of predation outcomes, traits, and their quantitative genetics will provide insights into the evolutionary ecology of species interactions and their eco‐evolutionary consequences. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Plasticity to reduce activity is a common way prey evade predators. However, by reducing activity prey often experience lower individual growth rates because they encounter their own prey less often. To overcome this cost, natural selection should not simply favor individuals generating stronger plasticity to reduce activity rates but also selection to resume activity once the threat of predation subsides. If such plasticity is adaptive, it should vary under environmental conditions that generate stronger selection for greater plasticity, such as predator density. Using a mesocosm experiment and observational study with a damselfly-prey/fish-predator system, we show that fish predation exerts selection for greater plasticity in activity rates of damselflies. Such selection allows damselfly activity levels to initially decrease and then rebound when the threat of predation dissipates, potentially helping to ameliorate a hypothesized growth penalty from activity reductions. We also find that the extent of plasticity in activity to the threat of fish predation increases, albeit slightly (r2 = 0.04%–0.063%), as fish densities increase across natural lakes, consistent with the idea that the magnitude of plasticity is shaped by environmental conditions underlying selection. Collectively, these results demonstrate how selection acts to drive adaptive plasticity in a common predator avoidance strategy. 
    more » « less
  3. Predation threat is a major driver of behavior in many prey species. Animals can recognize their relative risk of predation based on cues in the environment, including visual and/or chemical cues released by a predator or from its prey. When threat of predation is high, prey often respond by altering their behavior to reduce their probability of detection and/or capture. Here, we test how a clonal fish, the Amazon molly (Poecilia formosa), behaviorally responds to predation cues. We measured aggressive and social behaviors both under ‘risk’, where chemical cues from predatory fish and injured conspecifics were present, and control contexts (no risk cues present). We predicted that mollies would exhibit reduced aggression towards a simulated intruder and increased sociability under risk contexts as aggression might increase their visibility to a predator and shoaling should decrease their chance of capture through the dilution effect. As predicted, we found that Amazon mollies spent more time with a conspecific when risk cues were present, however they did not reduce their aggression. This highlights the general result of the ‘safety in numbers’ behavioral response that many small shoaling species exhibit, including these clonal fish, which suggests that mollies may view this response as a more effective anti-predator response compared to limiting their detectability by reducing aggressive conspecific interactions. 
    more » « less
  4. Abstract How consumer diversity determines consumption efficiency is a central issue in ecology. In the context of predation and biological control, this relationship concerns predator diversity and predation efficiency. Reduced predation efficiency can result from different predator taxa eating each other in addition to their common prey (interference due to intraguild predation). By contrast, multiple predator taxa with overlapping but complementary feeding niches can generate increased predation efficiency on their common prey (enemy complementarity). When viewed strictly from an ecological perspective, intraguild predation and enemy complementarity are opposing forces. However, from an evolutionary ecology perspective, predators facing strong intraguild predation may evolve traits that reduce their predation risk, possibly leading to niche complementarity between enemies; thus, selection from intraguild predation may lead to enemy complementarity rather than opposing it. As specialized predators that live in or on their hosts, parasitoids are subjected to intraguild predation from generalist predators that consume the parasitoids' hosts. The degree to which parasitoid–predator interactions are ruled by interference versus enemy complementarity has been debated. Here, we address this issue with field experiments in a forest community consisting of multiple species of trees, herbivorous caterpillars, parasitoids, ants, and birds. Our experiments and analyses found no interference effects, but revealed clear evidence for complementarity between parasitoids and birds (not ants). Parasitism rates by hymenopterans and dipterans were negatively associated with bird predation risk, and the variation in the strength of this negative association suggests that this enemy complementarity was due to parasitoid avoidance of intraguild predation. We further argue that avoidance of intraguild predation by parasitoids and other arthropod predators may explain enigmatic patterns in vertebrate–arthropod–plant food webs in a variety of terrestrial ecosystems. 
    more » « less
  5. Yue, Bi-Song (Ed.)
    Large mammalian herbivores use a diverse array of strategies to survive predator encounters including flight, grouping, vigilance, warning signals, and fitness indicators. While anti-predator strategies appear to be driven by specific predator traits, no prior studies have rigorously evaluated whether predator hunting characteristics predict reactive anti-predator responses. We experimentally investigated behavioral decisions made by free-ranging impala, wildebeest, and zebra during encounters with model predators with different functional traits. We hypothesized that the choice of response would be driven by a predator’s hunting style (i.e., ambush vs. coursing) while the intensity at which the behavior was performed would correlate with predator traits that contribute to the prey’s relative risk (i.e., each predator’s prey preference, prey-specific capture success, and local predator density). We found that the choice and intensity of anti-predator behaviors were both shaped by hunting style and relative risk factors. All prey species directed longer periods of vigilance towards predators with higher capture success. The decision to flee was the only behavior choice driven by predator characteristics (capture success and hunting style) while intensity of vigilance, frequency of alarm-calling, and flight latency were modulated based on predator hunting strategy and relative risk level. Impala regulated only the intensity of their behaviors, while zebra and wildebeest changed both type and intensity of response based on predator traits. Zebra and impala reacted to multiple components of predation threat, while wildebeest responded solely to capture success. Overall, our findings suggest that certain behaviors potentially facilitate survival under specific contexts and that prey responses may reflect the perceived level of predation risk, suggesting that adaptive functions to reactive anti-predator behaviors may reflect potential trade-offs to their use. The strong influence of prey species identity and social and environmental context suggest that these factors may interact with predator traits to determine the optimal response to immediate predation threat. 
    more » « less