Ants have remarkably diverse diets and extraordinary species richness, making them an excellent model system to study the evolution of taste. In this entirely eusocial clade, food choice and the mechanisms that regulate feeding have both individual and social dimensions. How taste receptors and sensory processing drive food preferences to generate dietary breadth in ants is poorly understood. It is additionally unclear how elements of colony organization such as division of labor and social food flow impact the mechanistic basis and evolution of taste. Previous work on dipteran, lepidopteran, and hymenopteran gustatory systems, while foundational, provide limited insights into ant dietary specialization. Here we synthesize and analyze research on ant gustation to identify mechanisms, sociobiological correlates, and phylogenetic patterns. We discuss the current state of genomic analyses of taste and future research. We propose that strikingly polymorphic species of Pheidole , Cephalotes , Camponotus , and leafcutter ants ( Atta and Acromyrmex ) offer compelling social systems to explore adaptive variation in gustation because of their pronounced division of labor in which morphologically, behaviorally, and neurally differentiated workers vary in feeding behavior. Research on ant gustation within and among species will advance our understanding of sensory systems and provide insight into the impact of taste on the evolution of species diversity and how social organization influences gustation.
more »
« less
The first fossil replete ant worker establishes living food storage in the Eocene
Worker specialization extends the behavioral and ecological repertoire of ant colonies. Specialization may relate to colony defense, brood care, foraging, and, in some taxa, storage. Replete workers swell the crop and gaster to store liquid food, which can be accessed by other colony members through trophallaxis. This storage ability, known as repletism, has in- dependently evolved across several ant lineages, but the temporal history of this trait has not yet been investigated. Here, we describe the first fossil replete in the extinct species Leptomyrmex neotropicus Baroni Urbani, 1980 preserved in Miocene-age Dominican amber. Together with new evidence of repletism in L. neotropicus’ extant sister species, Lep- tomyrmex relictus Boudinot & al., 2016, we reconstruct the pattern of acquisition and descent in this storage-linked trait. Our ancestral-state reconstruction suggests that Leptomyrmex acquired replete workers in the Eocene and may therefore represent the earliest instance of so-called “honeypot” ants among all known ants, both living and extinct.
more »
« less
- Award ID(s):
- 2144915
- PAR ID:
- 10439179
- Date Published:
- Journal Name:
- Myrmecological news
- Volume:
- 33
- ISSN:
- 1994-4136
- Page Range / eLocation ID:
- 139-147
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundPonerine ants are almost exclusively predatory and comprise many of the largest known ant species. Within this clade, the genusNeoponerais among the most conspicuous Neotropical predators. We describe the first fossil member of this lineage: a worker preserved in Miocene-age Dominican amber from Hispaniola. ResultsNeoponera vejestoriasp. nov. demonstrates a clear case of local extinction—there are no known extantNeoponeraspecies in the Greater Antilles. The species is attributable to an extant and well-defined species group in the genus, which suggests the group is older than previously estimated. Through CT scan reconstruction and linear morphometrics, we reconstruct the morphospace of extant and fossil ants to evaluate the history and evolution of predatory taxa in this island system. ConclusionsThe fossil attests to a shift in insular ecological community structure since the Miocene. The largest predatory taxa have undergone extinction on the island, but their extant relatives persist throughout the Neotropics.Neoponera vejestoriasp. nov. is larger than all other predatory ant workers known from Hispaniola, extant or extinct. Our results empirically demonstrate the loss of a functional niche associated with body size, which is a trait long hypothesized to be related to extinction risk.more » « less
-
Abstract Ant nests are biodiversity hot spots, concentrating resources from a wide area that can be exploited by other organisms, known as myrmecophiles. The mite order Mesostigmata includes a wide range of lineages that have become myrmecophiles with many species reliant on ant nests for at least part of their development. The nature of the associations is quite variable, including predators of smaller arthropods in the nest (close to the ancestral lifestyle of these mites), scavengers, kleptoparasites, parasites, and parasitoids. A few mite species show extreme modifications of morphological and/or developmental patterns, others show almost none. Some host specificity is common but one-on-one host specialization is rare or poorly tested. Phoresy on the ants is common, but the target ant caste varies with the goal of phoresy. In general, the diversity of mesostigmatid mites in the nest of a given ant species is affected by habitat conditions along with a range of life history characteristics of the ants, including factors such as body size, colony size, colony founding mode, social parasitism, and nest density. Unfortunately, the life history of the majority of mites associated with ants is still unknown.more » « less
-
Insect diversification has been catalyzed by widespread specialization on novel hosts - a process underlying exceptional radiations of phytophagous beetles, lepidopterans, parasitoid wasps, and inordinate lineages of symbionts, predators and other trophic specialists. The strict fidelity of many such interspecies associations is posited to hinge on sensory tuning to host-derived cues, a model supported by studies of neural function in host-specific model species. Here, we investigated the sensory basis of symbiotic interactions between a myrmecophile rove beetle and its single, natural host ant species. We show that host cues trigger analogous behaviors in both ant and symbiont. Cuticular hydrocarbons - the ant's nestmate recognition pheromones - elicit partner recognition by the beetle and execution of ant grooming behavior, integrating the beetle into the colony via chemical mimicry. The beetle also follows host trail pheromones, permitting inter-colony dispersal. Remarkably, the rove beetle also performs its symbiotic behaviors with ant species separated by ~95 million years, and shows minimal preference for its natural host over non-host ants. Experimentally validated agent-based modeling supports a scenario in which specificity is enforced by physiological constraints on symbiont dispersal, and negative fitness interactions with alternative hosts, rather than via sensory tuning. Enforced specificity may be a pervasive mechanism of host range restriction of specialists embedded within host niches. Chance realization of latent compatibilities with alternative hosts may facilitate host switching, enabling deep-time persistence of obligately symbiotic lineages.more » « less
-
Imperiale, Michael J. (Ed.)ABSTRACT Within social insect colonies, microbiomes often differ between castes due to their different functional roles and between colony locations. Trachymyrmex septentrionalis fungus-growing ants form colonies throughout the eastern United States and northern Mexico that include workers, female and male alates (unmated reproductive castes), larvae, and pupae. How T. septentrionalis microbiomes vary across this geographic range and between castes is unknown. Our sampling of individual ants from colonies across the eastern United States revealed a conserved T. septentrionalis worker ant microbiome and revealed that worker ant microbiomes are more conserved within colonies than between them. A deeper sampling of individual ants from two colonies that included all available castes (pupae, larvae, workers, and female and male alates), from both before and after adaptation to controlled laboratory conditions, revealed that ant microbiomes from each colony, caste, and rearing condition were typically conserved within but not between each sampling category. Tenericute bacterial symbionts were especially abundant in these ant microbiomes and varied widely in abundance between sampling categories. This study demonstrates how individual insect colonies primarily drive the composition of their microbiomes and shows that these microbiomes are further modified by developmental differences between insect castes and the different environmental conditions experienced by each colony. IMPORTANCE This study investigates microbiome assembly in the fungus-growing ant Trachymyrmex septentrionalis , showing how colony, caste, and lab adaptation influence the microbiome and revealing unique patterns of mollicute symbiont abundance. We find that ant microbiomes differ strongly between colonies but less so within colonies. Microbiomes of different castes and following lab adaptation also differ in a colony-specific manner. This study advances our understanding of the nature of individuality in social insect microbiomes and cautions against the common practice of only sampling a limited number of populations to understand microbiome diversity and function.more » « less
An official website of the United States government

