skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 8.1 μ m-emitting InP-based quantum cascade laser grown on Si by metalorganic chemical vapor deposition
This study presents the growth and characterization of an 8.1 μm-emitting, InGaAs/AlInAs/InP-based quantum cascade laser (QCL) formed on an InP-on-Si composite template by metalorganic chemical vapor deposition (MOCVD). First, for the composite-template formation, a GaAs buffer layer was grown by solid-source molecular-beam epitaxy on a commercial (001) GaP/Si substrate, thus forming a GaAs/GaP/Si template. Next, an InP metamorphic buffer layer (MBL) structure was grown atop the GaAs/GaP/Si template by MOCVD, followed by the MOCVD growth of the full QCL structure. The top-surface morphology of the GaAs/GaP/Si template before and after the InP MBL growth was assessed via atomic force microscopy, over a 100 μm2 area, and no antiphase domains were found. The average threading dislocation density (TDD) for the GaAs/GaP/Si template was found to be ∼1 × 109 cm−2, with a slightly lower defect density of ∼7.9 × 108 cm−2 after the InP MBL growth. The lasing performance of the QCL structure grown on Si was compared to that of its counterpart grown on InP native substrate and found to be quite similar. That is, the threshold-current density of the QCL on Si, for deep-etched ridge-guide devices with uncoated facets, is somewhat lower than that for its counterpart on native InP substrate, 1.50 vs 1.92 kA/cm2, while the maximum output power per facet is 1.64 vs 1.47 W. These results further demonstrate the resilience of QCLs to relatively high residual TDD values.  more » « less
Award ID(s):
1806285
PAR ID:
10439196
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
3
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Room-temperature, pulsed-operation lasing of 8.5  μm-emitting InP-based quantum cascade lasers (QCLs), with low threshold-current density and watt-level output power, is demonstrated from structures grown on (001) GaAs substrates by metal-organic chemical vapor deposition. Prior to growing the laser structure, which contains a 35-stage In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As lattice-matched active-core region, a ∼2  μm-thick nearly fully relaxed InP buffer with strained 1.6 nm-thick InAs quantum-dot-like dislocation-filter layers was grown. A smooth terminal buffer-layer surface, with roughness as low as 0.4 nm on a 10 × 10  μm 2 scale, was obtained, while the estimated threading-dislocation density was in the mid-range × 10 8  cm −2 . A series of measurements, on lasers grown on InP metamorphic buffer layers (MBLs) and on native InP substrates, were performed for understanding the impact of the buffer-layer's surface roughness, residual strain, and threading-dislocation density on unipolar devices such as QCLs. As-cleaved devices, grown on InP MBLs, were fabricated as 25  μm × 3 mm deep-etched ridge guides with lateral current injection. The results are pulsed maximum output power of 1.95 W/facet and a low threshold-current density of 1.86 kA/cm 2 at 293 K. These values are comparable to those obtained from devices grown on InP: 2.09 W/facet and 2.42 kA/cm 2 . This demonstrates the relative insensitivity of the device-performance metrics on high residual threading-dislocation density, and high-performance InP-based QCLs emitting near 8  μm can be achieved on lattice-mismatched substrates. 
    more » « less
  2. A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1atn ≈ 8 × 1015 cm−3) for β‐Ga2O3is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties. 
    more » « less
  3. Si-doped β-phase (010) Ga2O3 epi-films with fast growth rates were comprehensively investigated using trimethylgallium (TMGa) as the Ga precursor via metalorganic chemical vapor deposition (MOCVD). Two main challenges facing the MOCVD growth of thick (010) β-Ga2O3 films with fast growth rates include high impurity carbon (C) incorporation and rough surface morphologies due to the formation of imbedded 3D pyramid-shaped structures. In this work, two different categories of oxygen source (high-purity O2 > 99.9999% and O2* with 10 ppm of [H2O]) were used for β-Ga2O3 MOCVD growth. Our study revealed that the size and density of the 3D defects in the β-Ga2O3 epi-films were significantly reduced when the O2* was used. In addition, the use of off-axis (010) Ga2O3 substrates with 2° off-cut angle leads to further reduction of defect formation in β-Ga2O3 with fast growth rates. To suppress C incorporation in MOCVD β-Ga2O3 grown with high TMGa flow rates, our findings indicate that high O2 (or O2*) flow rates are essential. Superior room temperature electron mobilities as high as 110–190 cm2/V·s were achieved for β-Ga2O3 grown using O2* (2000 sccm) with a growth rate of 4.5 μm/h (film thickness of 6.3 μm) within the doping range of 1.3 × 1018–7 × 1015 cm−3. The C incorporation is significantly suppressed from ∼1018 cm−3 to <5 × 1016 cm−3 ([C] detection limit) for β-Ga2O3 grown using high O2 (O2*) flow rate of 2000 sccm. Results from this work will provide guidance on developing high-quality, thick β-Ga2O3 films required for high power electronic devices with vertical configurations. 
    more » « less
  4. Metalorganic chemical vapor deposition (MOCVD) growths of β-Ga 2 O 3 on on-axis (100) Ga 2 O 3 substrates are comprehensively investigated. Key MOCVD growth parameters including growth temperature, pressure, group VI/III molar flow rate ratio, and carrier gas flow rate are mapped. The dependence of the growth conditions is correlated with surface morphology, growth rate, and electron transport properties of the MOCVD grown (100) β-Ga 2 O 3 thin films. Lower shroud gas (argon) flow is found to enhance the surface smoothness with higher room temperature (RT) electron Hall mobility. The growth rate of the films decreases but with an increase of electron mobility as the VI/III molar flow rate ratio increases. Although no significant variation on the surface morphologies is observed at different growth temperatures, the general trend of electron Hall mobilities are found to increase with increasing growth temperature. The growth rates reduce significantly with uniform surface morphologies as the chamber pressure increases. By tuning the silane flow rate, the controllable carrier concentration of (100) β-Ga 2 O 3 thin films between low-10 17  cm −3 and low-10 18  cm −3 was achieved. Under optimized growth condition, an (100) β-Ga 2 O 3 thin film with RMS roughness value of 1.64 nm and a RT mobility of 24 cm 2 /Vs at a carrier concentration of 7.0 × 10 17  cm −3 are demonstrated. The mobilities are primarily limited by the twin lamellae and stacking faults defects generated from the growth interface. Atomic resolution scanning transmission electron microscopy reveals the formation of twin boundary defects in the films, resulting in the degradation of crystalline quality. Results from this work provide fundamental understanding of the MOCVD epitaxy of (100) β-Ga 2 O 3 on on-axis Ga 2 O 3 substrates and the dependence of the material properties on growth conditions. The limitation of electron transport properties of the (100) β-Ga 2 O 3 thin films below 25 cm 2 /Vs is attributed to the formation of incoherent boundaries (twin lamellae) and stacking faults grown along the on-axis (100) crystal orientation. 
    more » « less
  5. Morkoç, Hadis; Fujioka, Hiroshi; Schwarz, Ulrich T. (Ed.)
    We report the gate leakage current and threshold voltage characteristics of Al0.3Ga0.7N/GaN heterojunction field effect transistor (HFET) with metal-organic chemical vapor deposition (MOCVD) grown β-Ga2O3 as a gate dielectric for the first time. In this study, GaN channel HFET and β-Ga2O3 passivated metal-oxide-semiconductor-HFET (MOS-HFET) structures were grown in MOCVD using N2 as carrier gas on a sapphire substrate. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to characterize the structural properties and surface morphology of the heterostructure. The electrical properties were analyzed using van der Pauw, Hall, and the mercury probe capacitance-voltage (C-V) measurement systems. The 2-dimensional electron gas (2DEG) carrier density for the heterostructure was found to be in the order of ~1013 cm-2. The threshold voltage shifted more towards the negative side for the MOSHFET. The high-low (Hi-Lo) frequency-based C-V method was used to calculate the interface charge density for the oxide-AlGaN interface and was found to be in the order of ~1012 cm2eV-1. A remarkable reduction in leakage current from 2.33×10-2 A/cm2 for HFET to 1.03×10-8 A/cm2 for MOSHFET was observed demonstrating the viability of MOCVD-grown Ga2O3 as a gate dielectric. 
    more » « less