- Award ID(s):
- 1853541
- NSF-PAR ID:
- 10439244
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 430 to 436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium.more » « less
-
Abstract The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams.
-
The gas-phase reaction of the methylidyne (CH; X 2 Π) radical with dimethylacetylene (CH 3 CCCH 3 ; X 1 A 1g ) was studied at a collision energy of 20.6 kJ mol −1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C 5 H 7 reaction intermediate(s) ultimately dissociating to C 5 H 6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon–carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon–hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively ‘screen’ the carbon–carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C 2 H 6 ) forming propylene (CH 3 C 2 H 3 ). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH 3 CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne – ethane system.more » « less