A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species–area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem’s habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species’ traits, larger and more branched “complex” networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.
more »
« less
Revisiting scale invariance and scaling in ecology: River fractals as an example
Abstract Scale invariance, which refers to the preservation of geometric properties regardless of observation scale, is a prevalent phenomenon in ecological systems. This concept is closely associated with fractals, and river networks serve as prime examples of fractal systems. Quantifying river network complexity is crucial for unveiling the role of river fractals in riverine ecological dynamics, and researchers have used a metric of “branching probability” to do so. Previous studies showed that this metric reflects the fractal nature of river networks. However, a recent article by Carraro and Altermatt (2022) contradicted this classical observation and concluded that branching probability is “scale dependent.” I dispute this claim and argue that their major conclusion is derived merely from their misconception of scale invariance. Their analysis in the original article (fig. 3a) provided evidence that branching probability is scale‐invariant (i.e., branching probability exhibits a power‐law scaling), although the authors erroneously interpreted this result as a sign of scale dependence. In this article, I re‐introduce the definition of scale invariance and show that branching probability meets this definition. This provided an opportunity to address the divergent use of “scale invariance” and “scaling” between fractal theory and ecology.
more »
« less
- Award ID(s):
- 2015634
- PAR ID:
- 10439603
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Population Ecology
- Volume:
- 66
- Issue:
- 2
- ISSN:
- 1438-3896
- Format(s):
- Medium: X Size: p. 108-114
- Size(s):
- p. 108-114
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Today in the age of advanced ceramic civilization, there are a variety of applications for modern ceramics materials with specific properties. Our up-to date research recognizes that ceramics have a fractal configuration nature on the basis of different phenomena. The key property of fractals is their scale-independence. The practical value is that the fractal objects’ interaction and energy is possible at any reasonable scale of magnitude, including the nanoscale and may be even below. This is a consequence of fractal scale independence. This brings us to the conclusion that properties of fractals are valid on any scale (macro, micro, or nano). We also analyzed these questions with experimental results obtained from a comet, here 67P, and also from ceramic grain and pore morphologies on the microstructure level. Fractality, as a scale-independent morphology, provides significant variety of opportunities, for example for energy storage. From the viewpoint of scaling, the relation between large and small in fractal analysis is very important. An ideal fractal can be magnified endlessly but natural morphologies cannot, what is the new light in materials sciences and space.more » « less
-
Over the recent decades, a variety of indices, such as the fractal dimension, Hurst exponent, or Betti numbers, have been used to characterize structural or topological properties of art via a singular parameter, which could then help to classify artworks. A single fractal dimension, in particular, has been commonly interpreted as characteristic of the entire image, such as an abstract painting, whether binary, gray-scale, or in color, and whether self-similar or not. There is now ample evidence, however, that fractal exponents obtained using the standard box-counting are strongly dependent on the details of the method adopted, and on fitting straight lines to the entire scaling plots, which are typically nonlinear. Here, we propose a more discriminating approach with the aim of obtaining robust scaling plots and extracting relevant information encoded in them without any fitting routines. To this goal, we carefully average over all possible grid locations at each scale, rendering scaling plots independent of any particular choice of grids and, crucially, of the orientation of images. We then calculate the derivatives of the scaling plots, so that an image is described by a continuous function, its fractal contour, rather than a single scaling exponent valid over a limited range of scales. We test this method on synthetic examples, ordered and random, then on images of algorithmically defined fractals, and finally, examine selected abstract paintings and prints by acknowledged masters of modern art.more » « less
-
Amancio, Diego R. (Ed.)Using fractal analyses to study events allows us to capture the scale-independence of those events, that is, no matter at which level we study a phenomenon, we should get roughly the same results because events exhibit similar structure across scales. This is demonstrably true in mathematical fractals but is less assured in behavioral fractals. The current research directly tests the scale-independence hypothesis in the behavioral domain by exploring the fractal structure of aggression, a social phenomenon comprising events that span temporal scales from minutes of face-to-face arguments to centuries of international armed conflicts. Using publicly available data, we examined the temporal fractal structure of four scales of aggression: wars (very macrolevel, worldwide data), riots (macrolevel, worldwide data), violent crimes (microlevel, data gathered from cities and towns in the United States of America), and body movement during arguments (very microlevel, data gathered on American participants). Our results lend mixed support to the scale-independence hypothesis and provide insight into the self-organization of human interactions.more » « less
-
Fractals are geometric shapes that can display complex and self-similar patterns found in nature (e.g., clouds and plants). Recent works in visual recognition have leveraged this property to create random fractal images for model pre-training. In this paper, we study the inverse problem --- given a target image (not necessarily a fractal), we aim to generate a fractal image that looks like it. We propose a novel approach that learns the parameters underlying a fractal image via gradient descent. We show that our approach can find fractal parameters of high visual quality and be compatible with different loss functions, opening up several potentials, e.g., learning fractals for downstream tasks, scientific understanding, etc.more » « less
An official website of the United States government
