skip to main content


Title: Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries
Abstract

Lithium-based nonaqueous redox flow batteries (LRFBs) are alternative systems to conventional aqueous redox flow batteries because of their higher operating voltage and theoretical energy density. However, the use of ion-selective membranes limits the large-scale applicability of LRFBs. Here, we report high-voltage membrane-free LRFBs based on an all-organic biphasic system that uses Li metal anode and 2,4,6-tri-(1-cyclohexyloxy-4-imino-2,2,6,6-tetramethylpiperidine)-1,3,5-triazine (Tri-TEMPO), N-propyl phenothiazine (C3-PTZ), and tris(dialkylamino)cyclopropenium (CP) cathodes. Under static conditions, the Li||Tri-TEMPO, Li||C3-PTZ, and Li||CP batteries with 0.5 M redox-active material deliver capacity retentions of 98%, 98%, and 92%, respectively, for 100 cycles over ~55 days at the current density of 1 mA/cm2and a temperature of 27 °C. Moreover, the Li||Tri-TEMPO (0.5 M) flow battery delivers an initial average cell discharge voltage of 3.45 V and an energy density of ~33 Wh/L. This flow battery also demonstrates 81% of capacity for 100 cycles over ~45 days with average Coulombic efficiency of 96% and energy efficiency of 82% at the current density of 1.5 mA/cm2and at a temperature of 27 °C.

 
more » « less
Award ID(s):
2112798
NSF-PAR ID:
10439624
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Aqueous organic redox flow batteries (AORFBs) are highly attractive for large‐scale energy storage because of their nonflammability, low cost, and sustainability. (2,2,6,6‐Tetramethylpiperidin‐1‐yl)oxyl (TEMPO) derivatives, a class of redox active molecules bearing air‐stable free nitroxyl radicals and high redox potential (>0.8 V vs NHE), has been identified as promising catholytes for AORFBs. However, reported TEMPO based molecules are either permeable through ion exchange membranes or not chemically stable enough for long‐term energy storage. Herein, a new TEMPO derivative functionalized with a dual‐ammonium dicationic group,N1, N1, N1, N3, N3, 2, 2, 6, 6‐nonamethyl‐N3‐(piperidinyloxy)propane‐1,3‐bis(ammonium) dichloride (N2‐TEMPO) as a stable, low permeable catholyte for AORFBs is reported. Ultraviolet–visible (UV–vis) and proton nuclear magnetic resonance (1H‐NMR) spectroscopic studies reveal its exceptional stability and ultra‐low permeability (1.49 × 10−12 cm2 s−1). Coupled with 1,1′‐bis[3‐(trimethylammonio)propyl]‐4,4′‐bipyridinium tetrachloride ((NPr)2V) as an anolyte, a 1.35 VN2‐TEMPO/(NPr)2V AORFB with 0.5 melectrolytes (9.05 Wh L−1) delivers a high power density of 114 mW cm−2and 100% capacity retention for 400 cycles at 60 mA cm−2. At 1.0 melectrolyte concentrations, theN2‐TEMPO/(NPr)2V AORFB achieves an energy density of 18.1 Wh L−1and capacity retention of 90% for 400 cycles at 60 mA cm−2.

     
    more » « less
  2. Abstract

    Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid‐scale renewable energy storage. However, physicochemical properties of redox‐active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N′‐dibutyrate‐4,4′‐bipyridinium,(CBu)2V, as a highly stable, high capacity anolyte material under near pH neutral conditions.(CBu)2Vcan achieve solubility of 2.1 M and display a reversible, kinetically fast reduction at −0.43 V vs NHE at pH 9. DFT studies revealed that the high solubility of(CBu)2Vis attributed to its high molecular polarity while its negative reduction potential is benefitted from electron‐donating carboxylate groups. A 0.89 V (CBu)2V/(NH)4Fe(CN)6AORFB demonstrated exceptional energy storage performance, specifically, 100 % capacity retention with a discharge energy density of 9.5 Wh L−1for 1000 cycles, power densities of up to 85 mW cm−2, and an energy efficiency of 70 % at 60 mA cm−2.(CBu)2Vnot only represents the most capacity dense viologen with pendant ionic groups and also exhibits the longest (1200 hours or 50 days) and the most stable flow battery performance to date.

     
    more » « less
  3. Abstract

    Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid‐scale renewable energy storage. However, physicochemical properties of redox‐active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N′‐dibutyrate‐4,4′‐bipyridinium,(CBu)2V, as a highly stable, high capacity anolyte material under near pH neutral conditions.(CBu)2Vcan achieve solubility of 2.1 M and display a reversible, kinetically fast reduction at −0.43 V vs NHE at pH 9. DFT studies revealed that the high solubility of(CBu)2Vis attributed to its high molecular polarity while its negative reduction potential is benefitted from electron‐donating carboxylate groups. A 0.89 V (CBu)2V/(NH)4Fe(CN)6AORFB demonstrated exceptional energy storage performance, specifically, 100 % capacity retention with a discharge energy density of 9.5 Wh L−1for 1000 cycles, power densities of up to 85 mW cm−2, and an energy efficiency of 70 % at 60 mA cm−2.(CBu)2Vnot only represents the most capacity dense viologen with pendant ionic groups and also exhibits the longest (1200 hours or 50 days) and the most stable flow battery performance to date.

     
    more » « less
  4. Metal electrocatalysts have been reported to improve the electron transfer kinetics of aqueous redox flow battery electrolytes on various types of carbon electrodes. In this work, we electrodeposited bismuth metal onto a carbon paper anode of a redox flow battery containing our previously reported polyaminocarboxylate-chelated chromium electrolyte. Depositing 0.58 mg cm–2of bismuth metal enabled an electrochemically reversible electron transfer for the Cr(II)/Cr(III) couple, resulting in a 3.9% voltage efficiency increase over ten cycles at 100 mA cm–2across an 80% state of charge window, while maintaining >99% current efficiency. The bismuth electrocatalyst provided other improvements, such as a 13% increase in average discharge power density when cycling at 80% energy efficiency, along with a 60% decrease in charge transfer resistance and 12% decrease in the full cell area specific resistance. A chelated bismuth complex was also utilized as a bismuth source for electrodeposition, providing an example of how polyaminocarboxylate ligands can be further implemented into efforts towards improving the energy efficiency of aqueous redox flow batteries.

     
    more » « less
  5. Li–S batteries have attracted great attention for their combined advantages of potentially high energy density and low cost. To tackle the capacity fade from polysulfide dissolution, we have developed a confinement approach by in situ encapsulating sulfur with a MOF-derived CoS 2 in a carbon framework (S/Z-CoS 2 ), which in turn was derived from a sulfur/ZIF-67 composite (S/ZIF-67) via heat treatment. The formation of CoS 2 was confirmed by X-ray absorption spectroscopy (XAS) and its microstructure and chemical composition were examined through cryogenic scanning/transmission electron microscopy (Cryo-S/TEM) imaging with energy dispersive spectroscopy (EDX). Quantitative EDX suggests that sulfur resides inside the cages, rather than externally. S/hollow ZIF-67-derived CoS 2 (S/H-CoS 2 ) was rationally designed to serve as a control material to explore the efficiency of such hollow structures. Cryo-STEM-EDX mapping indicates that the majority of sulfur in S/H-CoS 2 stays outside of the host, despite its high void volumetric fraction of ∼85%. The S/Z-CoS 2 composite exhibited highly improved battery performance, when compared to both S/ZIF-67 and S/H-CoS 2 , due to both the efficient physical confinement of sulfur inside the host and strong chemical interactions between CoS 2 and sulfur/polysulfides. Electrochemical kinetics investigations revealed that the CoS 2 could serve as an electrocatalyst to accelerate the redox reactions. The composite could provide an areal capacity of 2.2 mA h cm −2 after 150 cycles at 0.2C and 1.5 mA h cm −2 at 1C. This novel material provides valuable insights for further development of high-energy, high-rate and long-life Li–S batteries. 
    more » « less