skip to main content

Title: A 1.51 V pH neutral redox flow battery towards scalable energy storage
Aqueous redox flow batteries using low-cost organic and inorganic active materials have received growing interest for sustainable energy storage. In this study, a low-cost, high redox potential (1.08 V vs. NHE) and high capacity ammonium bromide (NH 4 Br, 214.4 A h L −1 ) catholyte was coupled with an organic viologen anolyte to demonstrate 1.51 V high voltage (SPr) 2 V/Br − aqueous redox flow batteries under pH neutral conditions for the first time. Benefitting from the high water solubility of both the NH 4 Br catholyte and (SPr) 2 V anolyte, the newly designed (SPr) 2 V/Br − organic flow battery was operated at up to 1.5 M and an energy density of up to 30.4 W h L −1 . Using multiwall carbon nanotubes as an electrochemical additive for the Br 3 − /Br − redox couple, the highly energy dense (SPr) 2 V/Br − flow battery manifested outstanding current performance, up to 78% energy efficiency at 40 mA cm −2 current density and 227 mW cm −2 power density, the highest power density known for pH neutral organic flow batteries.
Authors:
; ; ; ; ;
Award ID(s):
1847674
Publication Date:
NSF-PAR ID:
10129139
Journal Name:
Journal of Materials Chemistry A
Volume:
7
Issue:
15
Page Range or eLocation-ID:
9130 to 9136
ISSN:
2050-7488
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-aqueous organic redox flow batteries (NAORFBs) are considered emerging large-scale energy storage systems due to their larger voltage window as compared to aqueous systems and their metal-free nature. However, low solubility, sustainability, and crossover of redox materials remain major challenges for the development of NAORFBs. Here, we report the use of redox active α-helical polypeptides suitable for NAORFBs. The polypeptides exhibit less crossover than small molecule analogs for both Daramic 175 separator and FAPQ 375 PP membrane, with FAPQ 375 PP preventing crossover most effectivley. Polypeptide NAORFBs assembled with a TEMPO-based polypeptide catholyte and viologen-based polypeptide anolyte exhibit low capacitymore »fade ( ca. 0.1% per cycle over 500 cycles) and high coulombic efficiency (>99.5%). The polypeptide NAORFBs exhibit an output voltage of 1.1 V with a maximum capacity of 0.53 A h L −1 (39% of the theoretical capacity). After 500 charge–discharge cycles, 60% of the initial capacity was retained. Post cycling analysis using spectral and electrochemical methods demonstrate that the polypeptide backbone and the ester side chain linkages are stable during electrochemical cycling. Taken together, these polypeptides offer naturally-derived, deconstructable platforms for addressing the needs of metal-free energy storage.« less
  2. Several metal-free, nonaqueous, disproportionation redox-flow-battery chemistries based on electrochemically active organic molecules are presented. The electrochemistry of 9,10-diphenylanthracene (DPA), a polycyclic aromatic compound, involves two reversible redox couples separated by more than 3 V, which are associated with electrochemical disproportionation of the neutral molecule. Nonaqueous solvents are investigated with the dual aims of realizing this high voltage in a battery cell and maximizing active-species solubility. Functionalized DPA analogues are synthesized and shown to exhibit electrochemical responses similar to pristine DPA; appending diethyleneglycoxy esters on each phenyl group to form DdPA (9,10-Bis(4-(2-(2-methoxyethoxy)ethoxy)carbonyl-phenyl)anthracene) improves solubility over DPA by a factor of 20more »in acetonitrile and 5 in dimethoxyethane. The 0.21 M maximum concentration of DdPA in dimethoxyethane suggests an energy density of 8 Wh l−1, which begins to approach the energy density of state-of-the-art aqueous RFBs. Charge/discharge of a stagnant one-dimensional cell delivers the highest cell voltages from an organic single-active-species RFB chemistry yet reported. Energy and power efficiencies for DPA in dimethoxyethane and DdPA in acetonitrile are similar to nonaqueous vanadium acetylacetonate in cells of similar construction.

    « less
  3. Aqueous redox flow batteries could provide viable grid-scale electrochemical energy storage for renewable energy because of their high-power performance, scalability, and safe operation ( 1 , 2 ). Redox-active organic molecules serve as the energy storage materials ( 2 , 3 ), but only very few organic molecules, such as viologen ( 4 , 5 ) and anthraquinone molecules ( 6 ), have demonstrated promising energy storage performance ( 2 ). Efforts continue to develop other families of organic molecules for flow battery applications that would have dense charge capacities and be chemically robust. On page 836 of this issue,more »Feng et al. ( 7 ) report a class of ingeniously designed 9-fluorenone (FL) molecules as high-performance, potentially low-cost organic anode electrolytes (anolytes) in aqueous organic redox flow batteries (see the figure, top). These FL anolytes not only display exceptional energy storage performance but also exhibit an unprecedented two-electron storage mechanism.« less
  4. Low-temperature direct ammonia fuel cells (DAFCs) use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia's low source-to-tank energy cost, easy transport and storage, and wide availability. However, current DAFC technologies are greatly limited by the kinetically sluggish ammonia oxidation reaction (AOR) at the anode. Herein, we report an AOR catalyst, in which ternary PtIrZn nanoparticles with an average size of 2.3 ± 0.2 nm were highly dispersed on a binary composite support comprising cerium oxide (CeO 2 ) and zeolitic imidazolate framework-8 (ZIF-8)-derived carbon (PtIrZn/CeO 2 -ZIF-8) through a sonochemical-assisted synthesis method. The PtIrZnmore »alloy, with the aid of abundant OH ad provided by CeO 2 and uniform particle dispersibility contributed by porous ZIF-8 carbon (surface area: ∼600 m 2 g −1 ), has shown highly efficient catalytic activity for the AOR in alkaline media, superior to that of commercial PtIr/C. The rotating disk electrode (RDE) results indicate a lower onset potential (0.35 vs. 0.43 V), relative to the reversible hydrogen electrode at room temperature, and a decreased activation energy (∼36.7 vs. 50.8 kJ mol −1 ) relative to the PtIr/C catalyst. Notably, the PtIrZn/CeO 2 -ZIF-8 catalyst was assembled with a high-performance hydroxide anion-exchange membrane to fabricate an alkaline DAFC, reaching a peak power density of 91 mW cm −2 . Unlike in aqueous electrolytes, supports play a critical role in improving uniform ionomer distribution and mass transport in the anode. PtIrZn nanoparticles on silicon dioxide (SiO 2 ) integrated with carboxyl-functionalized carbon nanotubes (CNT–COOH) were further studied as the anode in a DAFC. A significantly enhanced peak power density of 314 mW cm −2 was achieved. Density functional theory calculations elucidated that Zn atoms in the PtIr alloy can reduce the theoretical limiting potential of *NH 2 dehydrogenation to *NH by ∼0.1 V, which can be attributed to a Zn-modulated upshift of the Pt–Ir d-band that facilitates the N–H bond breakage.« less
  5. Non-aqueous organic material-based redox flow batteries (NAORFBs) possess the advantage of using organic solvents to achieve high electrochemical potential. However, regardless of the great progress made in this regard in the past decade, further development has been restricted by the lack of stable electroactive organic materials and highly selective separators. Here, we present a NAORFB with all-PEGylated, metal-free, organic compounds as electroactive materials. PEGylated phenothiazine and PEGylated viologen are utilized as the catholyte and anolyte, respectively. Combined with a composite nanoporous aramid nanofiber separator, the all-PEGylated NAORFB presents outstanding cyclability, with a capacity retention of 99.90% per cycle and averagemore »coulombic efficiency of 99.7%. By contrast, NAORFBs using half-PEGylated and non-PEGylated electrolytes display inferior cyclability owing to the crossover of non-PEGylated materials. An extended investigation was also performed on the batteries using non-PEGylated or half-PEGylated materials for mechanistic elucidation. This work validates the PEGylation strategy in NAORFBs for enhanced overall performance with respect to solubility, cyclability, and alleviated crossover.« less