skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Torsion-Based Rheometer for Measuring Viscoelastic Material Properties
ABSTRACT Rheology and the study of viscoelastic materials are an integral part of engineering and the study of biophysical systems. Tissue rheology is even used in the study of cancer and other diseases. However, the cost of a rheometer is feasible only for colleges, universities, and research laboratories. Even if a rheometer can be purchased, it is bulky and delicately calibrated, limiting its usefulness to the laboratory itself. The design presented here is less than a tenth of the cost of a professional rheometer. The design is also portable, making it the ideal solution to introduce viscoelasticity to high school students as well as for use in the field for obtaining rheological data.  more » « less
Award ID(s):
2026747
PAR ID:
10439701
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Biophysicist
Volume:
3
Issue:
2
ISSN:
2578-6970
Page Range / eLocation ID:
94 to 105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the interactive behavior of Janus particles (JPs) is a growing field of research. The enhancement in binding energy, in comparison to homogenous particles, and the dual characteristic of JPs open up new possibilities for novel applications. In many such applications, interfacial materials become subjected to flows that produce dilational and shear stresses. Therefore, it is important to understand the impact that the Janus character brings to interfaces. In this work, we study the microstructure of two-dimensional (2D) JP monolayers formed at the air–water interface and examine the shear viscoelasticity with an interface rheometer that was adapted for in situ surface pressure control via a Langmuir trough. We extend concepts from bulk rheology to data obtained from interfacial rheology as a tool to understand and predict the monolayer’s viscoelastic behavior. Finally, by calculating the time relaxation spectrum from the measured 2D dynamic moduli, we conclude that a phenomenon similar to glass transition is taking place by analogy. 
    more » « less
  2. Abstract A soft viscoelastic drop has dynamics governed by the balance between surface tension, viscosity, and elasticity, with the material rheology often being frequency dependent, which are utilized in bioprinting technologies for tissue engineering and drop-deposition processes for splash suppression. We study the free and forced oscillations of a soft viscoelastic drop deriving (1) the dispersion relationship for free oscillations, and (2) the frequency response for forced oscillations, of a soft material with arbitrary rheology. We then restrict our analysis to the classical cases of a Kelvin–Voigt and Maxwell model, which are relevant to soft gels and polymer fluids, respectively. We compute the complex frequencies, which are characterized by an oscillation frequency and decay rate, as they depend upon the dimensionless elastocapillary and Deborah numbers and map the boundary between regions of underdamped and overdamped motions. We conclude by illustrating how our theoretical predictions for the frequency-response diagram could be used in conjunction with drop-oscillation experiments as a “drop vibration rheometer”, suggesting future experiments using either ultrasonic levitation or a microgravity environment. 
    more » « less
  3. Shear driven patterning is seen in many soft matter systems. We use rheology and optical microscopy to probe the structures formed when we shear a colloid-polymer mixture containing temperature-sensitive microgel particles. By increasing the temperature, we can increase the particle attraction and transition from liquid-like to gel-like behavior. And by applying shear flow to the sample as the temperature and, hence, state of the system changes, we can affect the morphology of mesoscopic colloidal clusters. We can produce gels comprised of fibrous, elongated colloid-dense clusters, or we can form more isotropic clusters. The rheology is measured and shear-induced flocculation observed for colloid-polymer systems with different cluster morphologies. At shear rates high enough to produce elongated clusters but low enough to not break clusters apart, we observe log-like flocs that are aligned with the vorticity direction and roll between the parallel plates of our rheometer. 
    more » « less
  4. Abstract Considering their simplicity, processibility, and tunable rheological properties, polymer composite‐type precursors hold exceptional promise in the processing of polymers, ceramics, metals, and their composites. This large variety of precursors used in many different applications cover a large compositional space with dramatically varying rheological properties. Understanding how precursor composition influences their rheological properties is a key need towards streamlining the design and implementation of these precursors. With regard to this design advancement, this study elucidates the composition‐rheology relationships of graphene‐poly(ethylene) oxide (PEO) composite inks as a sample polymer composite‐type precursor. To this end, shear and extensional rheology of numerous compositions were studied across a wide compositional space, which varied graphene concentration, total solid concentration, and binder molecular weight. These studies showed that composition greatly affected various rheological parameters, such as the overall presence of yielding behavior. Specifically, this study illustrated the influence of (i) binder structure, (ii) total solid loading, and (iii) binder‐filler interactions on ink rheology. Extensional rheology was studied to examine how relaxation behaviors were dependent on composition and explicate how relaxation behaviors coincide with responses to shear forces. In tandem, our results illuminate significant composition‐rheology relationships in polymer composite‐type precursors. HighlightsRheology of polyethylene oxide‐graphene composite precursors were studied.Shear and extensional rheology, and their correlations were investigated.Composition‐binder molecular weight‐yielding relationships were elucidated.Extensional relaxation regimes were identified with respect to composition.Results can be used to determine compositional ranges for different processes. 
    more » « less
  5. In free-space optical communications and other applications, it is desirable to design optical beams that have reduced or even minimal scintillation. However, the optimization problem for minimizing scintillation is challenging, and few optimal solutions have been found. Here we investigate the general optimization problem of minimizing scintillation and formulate it as a convex optimization problem. An analytical solution is found and demonstrates that a beam that minimizes scintillation is incoherent light (i.e., spatially uncorrelated). Furthermore, numerical solutions show that beams minimizing scintillation give very low intensity at the receiver. To counteract this effect, we study a new convex cost function that balances both scintillation and intensity. We show through numerical experiments that the minimizers of this cost function reduce scintillation while preserving a significantly higher level of intensity at the receiver. 
    more » « less