While radio frequency (RF) based respiration monitoring for at- home health screening is receiving increasing attention, robustness remains an open challenge. In recent work, deep learning (DL) methods have been demonstrated effective in dealing with non- linear issues from multi-path interference to motion disturbance, thus improving the accuracy of RF-based respiration monitoring. However, such DL methods usually require large amounts of train- ing data with intensive manual labeling efforts, and frequently not openly available. We propose RF-Q for robust RF-based respiration monitoring, using self-supervised learning with an autoencoder (AE) neural network to quantify the quality of respiratory signal based on the residual between the original and reconstructed sig- nals. We demonstrate that, by simply quantifying the signal quality with AE for weighted estimation we can boost the end-to-end (e2e) respiration monitoring accuracy by an improvement ratio of 2.75 compared to a baseline.
more »
« less
RF-Q: Unsupervised Signal Quality Assessment for Robust RF-based Respiration Monitoring
Continuous monitoring of respiration provides invaluable insights about health status management (e.g., the progression or recovery of diseases). Recent advancements in radio frequency (RF) technologies show promise for continuous respiration monitoring by virtue of their non-invasive nature, and preferred over wearable solutions that require frequent charging and continuous wearing. However, RF signals are susceptible to large body movements, which are inevitable in real life, challenging the robustness of respiration monitoring. While many existing methods have been proposed to achieve robust RF-based respiration monitoring, their reliance on supervised data limits their potential for broad applicability. In this context, we propose, RF-Q, an unsupervised/self-supervised model to achieve signal quality assessment and quality-aware estimation for robust RF-based respiration monitoring. RF-Q uses the recon- struction error of an autoencoder (AE) neural network to quantify the quality of respiratory information in RF signals without the need for data labeling. With the combination of the quantified sig- nal quality and reconstructed signal in a weighted fusion, we are able to achieve improved robustness of RF respiration monitor- ing. We demonstrate that, instead of applying sophisticated models devised with respective expertise using a considerable amount of labeled data, by just quantifying the signal quality in an unsupervised manner we can significantly boost the average end-to-end (e2e) respiratory rate estimation accuracy of a baseline by an improvement ratio of 2.75, higher than the gain of 1.94 achieved by a supervised baseline method that excludes distorted data.
more »
« less
- Award ID(s):
- 1951880
- PAR ID:
- 10439766
- Date Published:
- Journal Name:
- ACM/IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vital signs (e.g., heart and respiratory rate) are indicative for health status assessment. Efforts have been made to extract vital signs using radio frequency (RF) techniques (e.g., Wi-Fi, FMCW, UWB), which offer a non-touch solution for continuous and ubiquitous monitoring without users’ cooperative efforts. While RF-based vital signs monitoring is user-friendly, its robustness faces two challenges. On the one hand, the RF signal is modulated by the periodic chest wall displacement due to heartbeat and breathing in a nonlinear manner. It is inherently hard to identify the fundamental heart and respiratory rates (HR and RR) in the presence of higher order harmonics of them and intermodulation between HR and RR, especially when they have overlapping frequency bands. On the other hand, the inadvertent body movements may disturb and distort the RF signal, overwhelming the vital signals, thus inhibiting the parameter estimation of the physiological movement (i.e., heartbeat and breathing). In this paper, we propose DeepVS, a deep learning approach that addresses the aforementioned challenges from the non-linearity and inadvertent movements for robust RF-based vital signs sensing in a unified manner. DeepVS combines 1D CNN and attention models to exploit local features and temporal correlations. Moreover, it leverages a two-stream scheme to integrate features from both time and frequency domains. Additionally, DeepVS unifies the estimation of HR and RR with a multi-head structure, which only adds limited extra overhead (<1%) to the existing model, compared to doubling the overhead using two separate models for HR and RR respectively. Our experiments demonstrate that DeepVS achieves 80-percentile HR/RR errors of 7.4/4.9 beat/breaths per minute (bpm) on a challenging dataset, as compared to 11.8/7.3 bpm of a non-learning solution. Besides, an ablation study has been conducted to quantify the effectiveness of DeepVS.more » « less
-
Markopoulos, Panos P.; Ouyang, Bing (Ed.)We consider the problem of unsupervised (blind) evaluation and assessment of the quality of data used for deep neural network (DNN) RF signal classification. When neural networks train on noisy or mislabeled data, they often (over-)fit to the noise measurements and faulty labels, which leads to significant performance degradation. Also, DNNs are vulnerable to adversarial attacks, which can considerably reduce their classification performance, with extremely small perturbations of their input. In this paper, we consider a new method based on L1-norm principal-component analysis (PCA) to improve the quality of labeled wireless data sets that are used for training a convolutional neural network (CNN), and a deep residual network (ResNet) for RF signal classification. Experiments with data generated for eleven classes of digital and analog modulated signals show that L1-norm tensor conformity curation of the data identifies and removes from the training data set inappropriate class instances that appear due to mislabeling and universal black-box adversarial attacks and drastically improves/restores the classification accuracy of the identified deep neural network architectures.more » « less
-
Basic vital signs such as heart and respiratory rates (HR and RR) are essential bio-indicators. Their longitudinal in-home collection enables prediction and detection of disease onset and change, providing for earlier health intervention. In this paper, we propose a robust, non-touch vital signs monitoring system using a pair of co-located Ultra-Wide Band (UWB) and depth sensors. By extensive manual examination, we identify four typical temporal and spectral signal patterns and their suitable vital signs estimators. We devise a probabilistic weighted framework (PWF) that quantifies evidence of these patterns to update the weighted combination of estimator output to track the vital signs robustly. We also design a “heatmap” based signal quality detector to exclude the disturbed signal from inadvertent motions. To monitor multiple co-habiting subjects in-home, we build a two-branch long short-term memory (LSTM) neural network to distinguish between individuals and their activities, providing activity context crucial to disambiguating critical from normal vital sign variability. To achieve reliable context annotation, we carefully devise the feature set of the consecutive skeletal poses from the depth data, and develop a probabilistic tracking model to tackle non-line-of-sight (NLOS) cases. Our experimental results demonstrate the robustness and superior performance of the individual modules as well as the end-to-end system for passive and context-aware vital signs monitoring.more » « less
-
Accurate continuous measurement of respiratory displacement using continuous wave Doppler radar requires rigorous management of dc offset which changes when a subject changes distance from the radar measurement system. Effective measurement, therefore, requires robust dynamic calibration which can recognize and compensate for changes in the nominal position of a subject. In this paper, a respiratory displacement measurement algorithm is proposed which can differentiate between sedentary and non-sedentary conditions and continuously adapt to provide long-term monitoring of a subject’s sedentary respiration. Arctangent demodulation is an effective means of quantifying continuous displacement using a quadrature Doppler radar, yet it depends on accurate identification of dc offset and dc information contributions in the radar I-Q arc with the subject in a particular position. The dynamic calibration method proposed here is demonstrated to differentiate between sedentary and non-sedentary conditions for six subjects to produce accurate sedentary respiration measurements even when the subject arbitrarily changes position, once the appropriate thresholds are established for the measurement environment.more » « less
An official website of the United States government

