A bstract We study a strongly interacting, fermionic fluid in the presence of an applied magnetic field using a holographic framework. At low temperatures, translation symmetry is spontaneously broken and the resulting phase is a striped Hall fluid. Due to the magnetic field, an electric field applied parallel to the stripes causes the stripes to slide, a phenomenon we coin “Hall sliding.” We also investigate the magneto-transport of the system in the presence of an explicit translation symmetry-breaking lattice which pins the stripes. Electrical properties are well represented by a hydrodynamical model, which gives us further insight into particle-like cyclotron and pseudo-Goldstone excitations we observe. The DC conductivities obey a novel semi-circle law, which we derive analytically in the translationally invariant ground state at low temperature.
more »
« less
Stabilization of Nonholonomic Pendulum Skate by Controlled Lagrangians
We consider the problem of stabilizing what we call a pendulum skate, a simple model of a figure skater developed by Gzenda and Putkaradze. By exploiting the symmetry of the system as well as taking care of the part of the symmetry broken by the gravity, the equations of motion are given as nonholonomic Euler–Poincaré equation with advected parameters. Our main interest is the stability of the sliding and spinning equilibria of the system. We show that the former is unstable and the latter is stable only under certain conditions. We use the method of Controlled Lagrangians to find a control to stabilize the sliding equilibrium.
more »
« less
- Award ID(s):
- 1824798
- PAR ID:
- 10439836
- Date Published:
- Journal Name:
- 2022 IEEE 61st Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 1861 to 1866
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rayleigh–Taylor instability of a thin liquid film overlying a passive fluid is examined when the film is attached to a periodic wavy deep corrugated wall. A reduced-order long-wave model shows that the wavy wall enhances the instability toward rupture when the interface pattern is sub-harmonic to the wall pattern. An expression that approximates the growth constant of instability is obtained for any value of wall amplitude for the special case when the wall consists of two full waves and the interface consists of a full wave. Nonlinear computations of the interface evolution show that sliding is arrested by the wavy wall if a single liquid film residing over a passive fluid is considered but not necessarily when a bilayer sandwiched by a top wavy wall and bottom flat wall is considered. In the latter case interface tracking shows that primary and secondary troughs will evolve and subsequently slide along the flat wall due to symmetry-breaking. It is further shown that this sliding motion of the interface can ultimately be arrested by the top wavy wall, depending on the holdup of the fluids. In other words, there exists a critical value of the interface position beyond which the onset of the sliding motion is observed and below which the sliding is always arrested.more » « less
-
Mogilner, Alexander (Ed.)Crosslinked cytoskeletal filament networks provide cells with a mechanism to regulate cellular mechanics and force transmission. An example in the microtubule cytoskeleton is mitotic spindle elongation. The three-dimensional geometry of these networks, including the overlap length and lateral microtubule spacing, likely controls how forces can be regulated, but how these parameters evolve during filament sliding is unknown. Recent evidence suggests that the crosslinker PRC1 can resist microtubule sliding by two distinct modes: a braking mode and a less resistive coasting mode. To explore how molecular-scale mechanisms influence network geometry in this system, we developed a computational model of sliding microtubule pairs crosslinked by PRC1 that reproduces the experimentally observed braking and coasting modes. Surprisingly, we found that the braking mode was associated with a substantially smaller lateral separation between the crosslinked microtubules than the coasting mode. This closer separation aligns the PRC1-mediated forces against sliding, increasing the resistive PRC1 force and dramatically reducing sliding speed. The model also finds an emergent similar average sliding speed due to PRC1 resistance, because higher initial sliding speed favors the transition to braking. Together, our results highlight the importance of the three-dimensional geometric relationships between crosslinkers and microtubules.more » « less
-
Prior research has investigated resonators capable of self-tuning through the use of a sliding mass. This passive tuning mechanism can be utilized to improve vibration control; however, little is known about the nonlinear dynamic interactions between the vibrating beam and sliding mass, particularly as these apply to vibration energy harvesting applications. This paper investigates this problem by numerically and experimentally examining the response of an electromagnetic self-tuning energy harvester. We present the governing equations of this electromagnetic cantilever beam with a sliding mass using the extended Hamilton principle. These equations are then discretized using the Galerkin method and solved numerically. An experiment is carried out to validate the numerical analysis. Parametric studies are conducted to examine the effect of different system parameters on the performance of the self-tuning harvester.more » « less
-
The assembly of synaptic protein-DNA complexes by specialized proteins is critical for bringing together two distant sites within a DNA molecule or bridging two DNA molecules. The assembly of such synaptosomes is needed in numerous genetic processes requiring the interactions of two or more sites. The molecular mechanisms by which the protein brings the sites together, enabling the assembly of synaptosomes, remain unknown. Such proteins can utilize sliding, jumping, and segmental transfer pathways proposed for the single-site search process, but none of these pathways explains how the synaptosome assembles. Here we used restriction enzyme SfiI, that requires the assembly of synaptosome for DNA cleavage, as our experimental system and applied time-lapse, high-speed AFM to directly visualize the site search process accomplished by the SfiI enzyme. For the single-site SfiI-DNA complexes, we were able to directly visualize such pathways as sliding, jumping, and segmental site transfer. However, within the synaptic looped complexes, we visualized the threading and site-bound segment transfer as the synaptosome-specific search pathways for SfiI. In addition, we visualized sliding and jumping pathways for the loop dissociated complexes. Based on our data, we propose the site-search model for synaptic protein-DNA systems.more » « less
An official website of the United States government

