skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Circumgalactic Medium of Extreme Emission Line Galaxies at z∼2: Resolved Spectroscopy and Radiative Transfer Modeling of Spatially Extended Lyα Emission in the KBSS-KCWI Survey*
Abstract The resonantly scattered Lyαline illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Lyαemission in 12 relatively low-mass (M∼ 109M)z∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Lyαblue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Lyαand absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the Hicolumn density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the Hicolumn density in the outer halos.  more » « less
Award ID(s):
1909198
PAR ID:
10439933
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 118
Size(s):
Article No. 118
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range. 
    more » « less
  2. Abstract JWST observations have recently begun delivering the first samples of Lyαvelocity profile measurements atz> 6, opening a new window into the reionization process. Interpretation ofz≳ 6 line profiles is currently stunted by limitations in our knowledge of the intrinsic Lyαprofile (before encountering the intergalactic medium (IGM)) of the galaxies that are common atz≳ 6. To overcome this shortcoming, we have obtained resolved (R∼ 3900) Lyαspectroscopy of 42 galaxies atz= 2.1–3.4 with similar properties as are seen atz> 6. We quantify a variety of Lyαprofile statistics as a function of [Oiii]+Hβequivalent width (EW). Our spectra reveal a new population ofz≃ 2–3 galaxies with large [Oiii]+HβEWs (>1200 Å) and a large fraction of Lyαflux emerging near the systemic redshift (peak velocity ≃0 km s−1). These spectra indicate that low-density neutral hydrogen channels are able to form in a subset of low-mass galaxies (≲1 × 108M) that experience a burst of star formation (sSFR > 100 Gyr−1). Other extreme [Oiii] emitters show weaker Lyαthat is shifted to higher velocities (≃240 km s−1) with little emission near the line center. We investigate the impact the IGM is likely to have on these intrinsic line profiles in the reionization era, finding that the centrally peaked Lyαemitters should be strongly attenuated atz≳ 5. We show that these line profiles are particularly sensitive to the impact of resonant scattering from infalling IGM and can be strongly attenuated even when the IGM is highly ionized atz≃ 5. We compare these expectations against a new database ofz≳ 6.5 galaxies with robust velocity profiles measured with JWST/NIRSpec. 
    more » « less
  3. Abstract We analyze the cool gas in and around 14 nearby galaxies (atz< 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi, Ni, Oi, and Ari), low-ionization (Siii, Sii, Cii, Nii, and Feii), and high-ionization (Siiii, Feiii, Nv, and Ovi) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudyphotoionization models. The Hicolumn density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr≳Re. Galaxies with higher stellar mass have weaker Hiabsorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10Re. Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hicolumn density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM. 
    more » « less
  4. Abstract While Civis the most common absorption line in broad absorption line quasar spectra, Balmer absorption lines (BALs) are among the rarest. We present analysis of Balmer absorption in a sample of 14 iron low-ionization BAL quasars (FeLoBALQs); eight are new identifications. We measured velocity offset, width, and apparent optical depth. The partial covering that is ubiquitous in BAL quasar spectra alters the measured Balmer optical depth ratios; accounting for this, we estimated the true H(n= 2) column density. We found the anticipated correlation between Eddington ratio and outflow speed, but it is weak in this sample because nearly all of the objects have the low outflow speeds characterizing loitering outflow FeLoBAL quasars, objects that are also found to have low accretion rates. Measurements ofdN/dv, the differential column density with respect to the outflow speed, are anticorrelated with the luminosity and Eddington ratio: the strongest absorption is observed at the lowest speeds in the lowest-luminosity objects. The absorption line width is correlated withαoi, theFλpoint-to-point slope between 5100 Å and 3μm. This parameter is strongly correlated with the Eddington ratio among low-redshift quasars. BALs have been recently found in the spectra of little red dots (LRDs), a class of high-redshift objects discovered by JWST. We note suggestive similarities between LRDs and FeLoBAL quasars in the emission-line shape, the presence of steep reddening and a scattered blue continuum, the lack of hot dust emission, and X-ray weakness. 
    more » « less
  5. Context.One of the surprising early findings with JWST has been the discovery of a strong “roll-over” or a softening of the absorption edge of Lyαin a large number of galaxies atz≳ 6, in addition to systematic offsets from photometric redshift estimates and fundamental galaxy scaling relations. This has been interpreted as strong cumulative damped Lyαabsorption (DLA) wings from high column densities of neutral atomic hydrogen (H I), signifying major gas accretion events in the formation of these galaxies. Aims.To explore this new phenomenon systematically, we assembled the JWST/NIRSpec PRImordial gas Mass AssembLy (PRIMAL) legacy survey of 584 galaxies atz = 5.0 − 13.4, designed to study the physical properties and gas in and around galaxies during the reionization epoch. Methods.We characterized this benchmark sample in full and spectroscopically derived the galaxy redshifts, metallicities, star formation rates, and ultraviolet (UV) slopes. We defined a new diagnostic, the Lyαdamping parameterDLyα, to measure and quantify the net effect of Lyαemission strength, the H Ifraction in the intergalactic medium, or the local H Icolumn density for each source. The JWST-PRIMAL survey is based on the spectroscopic DAWN JWST Archive (DJA-Spec). We describe DJA-Spec in this paper, detailing the reduction methods, the post-processing steps, and basic analysis tools. All the software, reduced spectra, and spectroscopically derived quantities and catalogs are made publicly available in dedicated repositories. Results.We find that the fraction of galaxies showing strong integrated DLAs withNHI > 1021 cm−2only increases slightly from ≈60% atz ≈ 6 up to ≈65 − 90% atz > 8. Similarly, the prevalence and prominence of Lyαemission is found to increase with decreasing redshift, in qualitative agreement with previous observational results. Strong Lyαemitters (LAEs) are predominantly found to be associated with low-metallicity and UV faint galaxies. By contrast, strong DLAs are observed in galaxies with a variety of intrinsic physical properties, but predominantly at high redshifts and low metallicities. Conclusions.Our results indicate that strong DLAs likely reflect a particular early assembly phase of reionization-era galaxies, at which point they are largely dominated by pristine H Igas accretion. Atz = 8 − 10, this gas gradually cools and forms into stars that ionize their local surroundings, forming large ionized bubbles and producing strong observed Lyαemission atz < 8. 
    more » « less