Ly
The resonantly scattered Ly
- Award ID(s):
- 1909198
- PAR ID:
- 10439933
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 953
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 118
- Size(s):
- Article No. 118
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract α line profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyα line profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyα emission profile in the bottom of a damped, Lyα absorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyα absorption and the Lyα emission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyα exchange between high-N Hi and low-N Hi paths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyα peak separation and the [Oiii ]/[Oii ] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyα peak separation decreases. We combine measurements of Lyα peak separation and Lyα red peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyα trough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyα peak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyα photons outside the spectroscopic aperture reshapes Lyα profiles because the distances to these compact starbursts span a large range. -
Abstract JWST observations have recently begun delivering the first samples of Ly
α velocity profile measurements atz > 6, opening a new window into the reionization process. Interpretation ofz ≳ 6 line profiles is currently stunted by limitations in our knowledge of the intrinsic Lyα profile (before encountering the intergalactic medium (IGM)) of the galaxies that are common atz ≳ 6. To overcome this shortcoming, we have obtained resolved (R ∼ 3900) Lyα spectroscopy of 42 galaxies atz = 2.1–3.4 with similar properties as are seen atz > 6. We quantify a variety of Lyα profile statistics as a function of [Oiii ]+Hβ equivalent width (EW). Our spectra reveal a new population ofz ≃ 2–3 galaxies with large [Oiii ]+Hβ EWs (>1200 Å) and a large fraction of Lyα flux emerging near the systemic redshift (peak velocity ≃0 km s−1). These spectra indicate that low-density neutral hydrogen channels are able to form in a subset of low-mass galaxies (≲1 × 108M ⊙) that experience a burst of star formation (sSFR > 100 Gyr−1). Other extreme [Oiii ] emitters show weaker Lyα that is shifted to higher velocities (≃240 km s−1) with little emission near the line center. We investigate the impact the IGM is likely to have on these intrinsic line profiles in the reionization era, finding that the centrally peaked Lyα emitters should be strongly attenuated atz ≳ 5. We show that these line profiles are particularly sensitive to the impact of resonant scattering from infalling IGM and can be strongly attenuated even when the IGM is highly ionized atz ≃ 5. We compare these expectations against a new database ofz ≳ 6.5 galaxies with robust velocity profiles measured with JWST/NIRSpec. -
Abstract We analyze the cool gas in and around 14 nearby galaxies (at
z < 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi , Ni , Oi , and Ari ), low-ionization (Siii , Sii , Cii , Nii , and Feii ), and high-ionization (Siiii , Feiii , Nv , and Ovi ) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudy photoionization models. The Hi column density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr ≳R e . Galaxies with higher stellar mass have weaker Hi absorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10R e . Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hi column density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM. -
Abstract Using the CoDa II simulation, we study the Ly
α transmissivity of the intergalactic medium (IGM) during reionization. Atz > 6, a typical galaxy without an active galactic nucleus fails to form a proximity zone around itself due to the overdensity of the surrounding IGM. The gravitational infall motion in the IGM makes the resonance absorption extend to the red side of Lyα , suppressing the transmission up to roughly the circular velocity of the galaxy. In some sight lines, an optically thin blob generated by a supernova in a neighboring galaxy results in a peak feature, which can be mistaken for a blue peak. Redward of the resonance absorption, the damping-wing opacity correlates with the global IGM neutral fraction and the UV magnitude of the source galaxy. Brighter galaxies tend to suffer lower opacity because they tend to reside in larger Hii regions, and the surrounding IGM transmits redder photons, which are less susceptible to attenuation, owing to stronger infall velocity. The Hii regions are highly nonspherical, causing both sight-line-to-sight-line and galaxy-to-galaxy variation in opacity. Also, self-shielded systems within Hii regions strongly attenuate the emission for certain sight lines. All these factors add to the transmissivity variation, requiring a large sample size to constrain the average transmission. The variation is largest for fainter galaxies at higher redshift. The 68% range of the transmissivity is similar to or greater than the median for galaxies withM UV≥ −21 atz ≥ 7, implying that more than a hundred galaxies would be needed to measure the transmission to 10% accuracy. -
Abstract To understand the mechanism behind high-
z Lyα nebulae, we simulate the scattering of Lyα in a Hi halo about a central Lyα source. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total Hi column densities, Hi spatial concentrations, and central source galaxies (e.g., with Lyα line widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyα photons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyα nebulae (∼100 kpc) at total column densitiesN H I≥ 1020cm−2and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyα nebula morphologies: with and without bright cores. Cores are seen whenN H Iis low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model,N H Idominates the trends. The radial behaviors of the Lyα surface brightness, spectral line shape, and polarization in the clumpy model with covering factorf c ≳ 5 approach those of the smooth model at the sameN H I. A clumpy medium with highN H Iand lowf c ≲ 2 generates Lyα features via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump.