skip to main content


Title: CLASSY VII Lyα Profiles: The Structure and Kinematics of Neutral Gas and Implications for LyC Escape in Reionization-era Analogs*
Abstract

Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range.

 
more » « less
Award ID(s):
1817125
NSF-PAR ID:
10467785
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 39
Size(s):
["Article No. 39"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The resonantly scattered Lyαline illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Lyαemission in 12 relatively low-mass (M∼ 109M)z∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Lyαblue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Lyαand absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the Hicolumn density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the Hicolumn density in the outer halos.

     
    more » « less
  2. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.

     
    more » « less
  3. Context. The Lyman- α line in the ultraviolet (UV) and the [CII] line in the far-infrared (FIR) are widely used tools to identify galaxies in the early Universe and to obtain insights into interstellar medium (ISM) properties in high-redshift galaxies. By combining data obtained with ALMA in band 7 at ∼320 GHz as part of the ALMA Large Program to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at the Keck Observatory, VIMOS and FORS2 at the Very Large Telescope, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 <   z  <  6 in which we detect both the Lyman- α line in the UV and the [CII] line in the FIR. Aims. The goal of this paper is to constrain the properties of the Ly α emission in these galaxies in relation to other properties of the ISM. Methods. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we exploited the available optical spectroscopy to obtain the Ly α -[CII] and ISM-[CII] velocity offsets. Results. We find that 90% of the selected objects have Ly α -[CII] velocity offsets in the range 0 <  Δ v Ly α  − [CII]  <  400 km s −1 , in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower redshifts. At the same time, we observe ISM-[CII] offsets in the range −500 <  Δ v ISM−[CII]  <  0 km s −1 , in line with values at all redshifts, which we interpret as evidence for outflows in these galaxies. We find significant anticorrelations between Δ v Ly α −[CII] and the Ly α rest-frame equivalent width EW 0 (Ly α ) (or equivalently, the Ly α escape fraction f esc (Ly α )): galaxies that show smaller Δ v Ly α −[CII] have larger EW 0 (Ly α ) and f esc (Ly α ). Conclusions. We interpret these results in the framework of available models for the radiative transfer of Ly α photons. According to the models, the escape of Ly α photons would be favored in galaxies with high outflow velocities, producing large EW 0 (Ly α ) and small Δ v Ly α -[CII] , in agreement with our observations. The uniform shell model would also predict that the Ly α escape in galaxies with slow outflows (0 <   v out  <  300 km s −1 ) is mainly determined by the neutral hydrogen column density (NHI) along the line of sight, while the alternative model by Steidel et al. (2010, ApJ, 717, 289) would more highly favor a combination of NHI at the systemic velocity and covering fraction as driver of the Ly α escape. We suggest that the increase in Ly α escape that is observed in the literature between z  ∼ 2 and z  ∼ 6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction. 
    more » « less
  4. Abstract

    Galaxy formation and evolution are regulated by the feedback from galactic winds. Absorption lines provide the most widely available probe of winds. However, since most data only provide information integrated along the line of sight, they do not directly constrain the radial structure of the outflows. In this paper, we present a method to directly measure the gas electron density in outflows (ne), which in turn yields estimates of outflow cloud properties (e.g., density, volume filling factor, and sizes/masses). We also estimate the distance (rn) from the starburst at which the observed densities are found. We focus on 22 local star-forming galaxies primarily from the COS Legacy Archive Spectroscopic SurveY (CLASSY). In half of them, we detect absorption lines from fine-structure excited transitions of Siii(i.e., Siii*). We determinenefrom relative column densities of Siiiand Siii*, given Siii* originates from collisional excitation by free electrons. We find that the derivednecorrelates well with the galaxy’s star formation rate per unit area. From photoionization models or assuming the outflow is in pressure equilibrium with the wind fluid, we getrn∼ 1–2r*or ∼5r*, respectively, wherer*is the starburst radius. Based on comparisons to theoretical models of multiphase outflows, nearly all of the outflows have cloud sizes large enough for the clouds to survive their interaction with the hot wind fluid. Most of these measurements are the first ever for galactic winds detected in absorption lines and, thus, will provide important constraints for future models of galactic winds.

     
    more » « less
  5. Abstract

    We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.

     
    more » « less