skip to main content


Title: An electrodynamics model for Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO)
Abstract We introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F -region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E -region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F -region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F -region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F.  more » « less
Award ID(s):
1916055
NSF-PAR ID:
10347897
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Progress in Earth and Planetary Science
Volume:
9
Issue:
1
ISSN:
2197-4284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the results of an analysis of long‐term measurements of ionosphericFregionE × Bplasma drifts in the American/Peruvian sector. The analysis used observations made between 1986 and 2017 by the incoherent scatter radar of the Jicamarca Radio Observatory. Unlike previous studies, we analyzed both vertical and zonal components of the plasma drifts to derive the geomagnetically quiet time climatological variation of the drifts as a function of height and local time. We determine the average behavior of the height profiles of the drifts for different seasons and distinct solar flux conditions. Our results show good agreement with previous height‐averaged climatological results of vertical and zonal plasma drifts, despite that they are obtained from different sets of measurements. More importantly, our results quantify average height variations in the drifts. The results show, for example, the solar flux control over the height variation of the vertical drifts. The results also show the weak dependence of the daytime zonal drift profiles on solar and seasonal variations. We quantify the effects of seasonal and solar flux variations on the morphology of the vertical shear in the zonal plasma drifts associated with the evening plasma vortex. Assuming interchangeability between local time and longitude, we tested the curl‐free condition for theFregion electric fields with very good results for all seasons and solar flux conditions. We envision the use of our results to aid numerical modeling of ionospheric electrodynamics and structuring and to assist with the interpretation of satellite observations of low‐latitude plasma drifts.

     
    more » « less
  2. We introduce the implementation of a global climatological model of the equatorial ionospheric F-region zonal drifts (EZDrifts) that is made available to the public. The model uses the analytic description of the zonal plasma drifts presented by Haerendel et al. (1992) [ J Geophys Res 97(A2) : 1209–1223] and is driven by climatological models of the ionosphere and thermosphere under a realistic geomagnetic field configuration. EZDrifts is an expansion of the model of the zonal drifts first presented by Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] which was only valid for the Jicamarca longitude sector and two specific solar flux conditions. EZDrifts now uses vertical equatorial plasma drifts from Scherliess & Fejer (1999) [ J Geophys Res 104(A4) : 6829–6842] model which allows it to provide zonal drifts for any day of the year, longitude, and solar flux condition. We show that the model can reproduce the main results of the Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] model for the Peruvian sector. We also illustrate an application of EZDrifts by presenting and discussing longitudinal variabilities produced by the model. We show that the model predicts longitudinal variations in the reversal times of the drifts that are in good agreement with observations made by C/NOFS. EZDrifts also predicts longitudinal variations in the magnitude of the drifts that can be identified in the June solstice observations made by C/NOFS. We also point out data-model differences observed during Equinox and December solstice. Finally, we explain that the longitudinal variations in the zonal plasma drifts are caused by longitudinal variations in the latitude of the magnetic equator and, consequently, in the wind dynamo contributing to the resulting drifts. EZDrifts is distributed to the community through a public repository and can be used in applications requiring an estimate of the overall behavior of the equatorial zonal drifts. 
    more » « less
  3. Abstract

    A suite of general circulation models is used to investigate the surface magnetic perturbations due to the ionospheric currents driven by an eastward‐propagating ultrafast Kelvin wave (UFKW) packet with periods between 2 and 4 days and zonal wave number. The simulated daytime UFKW‐driven meridional magnetic perturbations dBn (∼±5 nT) (or zonal currents) between about 5° and 20° magnetic latitude in each hemisphere are opposite in sign to those equatorward of±5° and produced by the equatorial electrojet (EEJ), with the directions on any given day determined by the phase of the UFKW as it propagates eastward with respect to the sunlit ionosphere. Since the nominal daytimeSqzonal current between∼±30° is uniformly eastward flowing, the present results are consistent with the hypothesis that the EEJ is part of a local current vortex with oppositely directed currents near the equator versus those between 5° and 20° at low latitudes. UFKWs are a special wave type wherein meridional winds are relatively small, which leads to our finding that the EEJ dBn constitutes a simple quantitative proxy forE‐region UFKW neutral winds near the 107‐km peak height of the Hall conductivity, including the variable wave period of the UFKW packet. Numerical experiments are also performed to understand the longitude distribution of actual ground magnetometer measurements that are needed to reliably extract the UFKW dBn signal and hence the neutral winds, both of which are closely linked to plasma drifts and electron densities in the equatorialFregion. Using actual magnetometer data it is moreover shown that the UFKW dBn signal is easily measurable. Therefore measurements of EEJ dBn can potentially be used to infer UFKW activity for scientific investigations focusing on coupling between the tropical troposphere and the ionosphere‐thermosphere.

     
    more » « less
  4. Abstract

    We used observations from the Peruvian Fabry‐Perot Interferometer network and from the Jicamarca radar to study the coupling of equatorial nighttime thermospheric winds and ionospheric drifts under moderate solar flux conditions. We show that the coupling of the extended quiet time zonal winds and drifts increases from dusk to midnight and is stronger during equinox than during June solstice. After midnight, they are strongly coupled, except during December solstice when the drifts are stronger. The nighttime disturbance zonal winds and drifts, derived by removing the corresponding quiet time values, are westward with peak magnitudes around midnight. They are in close agreement, except at early night when the winds are stronger, and have strongest (weakest) magnitudes during equinox (June solstice). We also present observations showing the strong neutral wind‐plasma drift coupling during the September 2017 and August 2015 large geomagnetic storms. We show that during the early phase of the September 2017 storm there were large and short‐lived, prompt penetration electric field‐driven, correlated oscillations (~1 hr) in the vertical and zonal plasma drifts, and in the zonal and meridional winds. These are the first observations of prompt penetration‐driven equatorial zonal and meridional wind disturbances. In this event, the vertical and zonal drift oscillations were anticorrelated, and the zonal winds followed the zonal drift oscillations with a delay of ~15 min. Our results illustrate the strong coupling of equatorial thermospheric winds and plasma drifts during geomagnetically quiet as well as during short‐lived prompt penetration and long‐lasting disturbance dynamo events.

     
    more » « less
  5. Abstract

    Previous radar studies have shown that magnitude of the vertical component of equatorial ionosphericE×Bplasma drifts can vary significantly with height, even within mainFregion altitudes. These studies, however, were limited to few observation days. In order to properly quantify the height variation of equatorialFregion vertical drifts, we examined 559 days of measurements made by the incoherent scatter radar of the Jicamarca Radio Observatory between the years of 1986 and 2017. From the observed profiles of vertical plasma drifts, we determined the mean behavior and variability of the height gradients as a function of local time and two distinct solar flux conditions (meanF10.7around 80 and 150 SFU). Only observations made under geomagnetically quiet conditions were considered. Our results quantify the enhanced negative height gradients of vertical drifts near sunset that have been reported in the past. More importantly, we also identify and explain an enhancement in positive gradients near sunrise. We discuss the variability of the height gradients in vertical ionosphericE×Bdrifts at main equatorialFregion heights, and the impact of this variability for satellite observations and studies of ionospheric stability and equatorial spreadF.

     
    more » « less