skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The solution surface of the Li-Stephens haplotype copying model
Abstract The Li-Stephens (LS) haplotype copying model forms the basis of a number of important statistical inference procedures in genetics. LS is a probabilistic generative model which supposes that a sampled chromosome is an imperfect mosaic of other chromosomes found in a population. In the frequentist setting which is the focus of this paper, the output of LS is a “copying path” through chromosome space. The behavior of LS depends crucially on two user-specified parameters,$$\theta $$ θ and$$\rho $$ ρ , which are respectively interpreted as the rates of mutation and recombination. However, because LS is not based on a realistic model of ancestry, the precise connection between these parameters and the biological phenomena they represent is unclear. Here, we offer an alternative perspective, which considers$$\theta $$ θ and$$\rho $$ ρ as tuning parameters, and seeks to understand their impact on the LS output. We derive an algorithm which, for a given dataset, efficiently partitions the$$(\theta ,\rho )$$ ( θ , ρ ) plane into regions where the output of the algorithm is constant, thereby enumerating all possible solutions to the LS model in one go. We extend this approach to the “diploid LS” model commonly used for phasing. We demonstrate the usefulness of our method by studying the effects of changing$$\theta $$ θ and$$\rho $$ ρ when using LS for common bioinformatic tasks. Our findings indicate that using the conventional (i.e., population-scaled) values for$$\theta $$ θ and$$\rho $$ ρ produces near optimal results for imputation, but may systematically inflate switch error in the case of phasing diploid genotypes.  more » « less
Award ID(s):
2052653
PAR ID:
10439987
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Algorithms for Molecular Biology
Volume:
18
Issue:
1
ISSN:
1748-7188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose a new observable for the measurement of the forward–backward asymmetry$$(A_{FB})$$ ( A FB ) in Drell–Yan lepton production. At hadron colliders, the$$A_{FB}$$ A FB distribution is sensitive to both the electroweak (EW) fundamental parameter$$\sin ^{2} \theta _{W}$$ sin 2 θ W , the weak mixing angle, and the parton distribution functions (PDFs). Hence, the determination of$$\sin ^{2} \theta _{W}$$ sin 2 θ W and the updating of PDFs by directly using the same$$A_{FB}$$ A FB spectrum are strongly correlated. This correlation would introduce large bias or uncertainty into both precise measurements of EW and PDF sectors. In this article, we show that the sensitivity of$$A_{FB}$$ A FB on$$\sin ^{2} \theta _{W}$$ sin 2 θ W is dominated by its average value around theZpole region, while the shape (or gradient) of the$$A_{FB}$$ A FB spectrum is insensitive to$$\sin ^{2} \theta _{W}$$ sin 2 θ W and contains important information on the PDF modeling. Accordingly, a new observable related to the gradient of the spectrum is introduced, and demonstrated to be able to significantly reduce the potential bias on the determination of$$\sin ^{2} \theta _{W}$$ sin 2 θ W when updating the PDFs using the same$$A_{FB}$$ A FB data. 
    more » « less
  2. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  3. Abstract We consider the Cauchy problem for the logarithmically singular surface quasi-geostrophic (SQG) equation, introduced by Ohkitani,$$\begin{aligned} \begin{aligned} \partial _t \theta - \nabla ^\perp \log (10+(-\Delta )^{\frac{1}{2}})\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ t θ - log ( 10 + ( - Δ ) 1 2 ) θ · θ = 0 , and establish local existence and uniqueness of smooth solutions in the scale of Sobolev spaces with exponent decreasing with time. Such a decrease of the Sobolev exponent is necessary, as we have shown in the companion paper (Chae et al. in Illposedness via degenerate dispersion for generalized surface quasi-geostrophic equations with singular velocities,arXiv:2308.02120) that the problem is strongly ill-posed in any fixed Sobolev spaces. The time dependence of the Sobolev exponent can be removed when there is a dissipation term strictly stronger than log. These results improve wellposedness statements by Chae et al. (Comm Pure Appl Math 65(8):1037–1066, 2012). This well-posedness result can be applied to describe the long-time dynamics of the$$\delta $$ δ -SQG equations, defined by$$\begin{aligned} \begin{aligned} \partial _t \theta + \nabla ^\perp (10+(-\Delta )^{\frac{1}{2}})^{-\delta }\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ t θ + ( 10 + ( - Δ ) 1 2 ) - δ θ · θ = 0 , for all sufficiently small$$\delta >0$$ δ > 0 depending on the size of the initial data. For the same range of$$\delta $$ δ , we establish global well-posedness of smooth solutions to the dissipative SQG equations. 
    more » « less
  4. Abstract We evaluate the$$a_1(1260) \rightarrow \pi \sigma (f_0(500))$$ a 1 ( 1260 ) π σ ( f 0 ( 500 ) ) decay width from the perspective that the$$a_1(1260)$$ a 1 ( 1260 ) resonance is dynamically generated from the pseudoscalar–vector interaction and the$$\sigma $$ σ arises from the pseudoscalar–pseudoscalar interaction. A triangle mechanism with$$a_1(1260) \rightarrow \rho \pi $$ a 1 ( 1260 ) ρ π followed by$$\rho \rightarrow \pi \pi $$ ρ π π and a fusion of two pions within the loop to produce the$$\sigma $$ σ provides the mechanism for this decay under these assumptions for the nature of the two resonances. We obtain widths of the order of 13–22 MeV. Present experimental results differ substantially from each other, suggesting that extra efforts should be devoted to the precise extraction of this important partial decay width, which should provide valuable information on the nature of the axial vector and scalar meson resonances and help clarify the role of the$$\pi \sigma $$ π σ channel in recent lattice QCD calculations of the$$a_1$$ a 1
    more » « less
  5. Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$ 2 O and D$$_2$$ 2 O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ ρ ( T ) , isothermal compressibility$$\kappa _T(T)$$ κ T ( T ) , and self-diffusion coefficientsD(T) of H$$_2$$ 2 O and D$$_2$$ 2 O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$ C P ( T ) obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$ 2 O and D$$_2$$ 2 O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ 2 O and D$$_2$$ 2 O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ 2 O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$ P c = 167 ± 9  MPa,$$T_c = 159 \pm 6$$ T c = 159 ± 6  K, and$$\rho _c = 1.02 \pm 0.01$$ ρ c = 1.02 ± 0.01  g/cm$$^3$$ 3 . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$ 2 O is estimated to be$$P_c = 176 \pm 4$$ P c = 176 ± 4  MPa,$$T_c = 177 \pm 2$$ T c = 177 ± 2  K, and$$\rho _c = 1.13 \pm 0.01$$ ρ c = 1.13 ± 0.01  g/cm$$^3$$ 3 . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$ P c = 203 ± 4  MPa,$$T_c = 175 \pm 2$$ T c = 175 ± 2  K, and$$\rho _c = 1.03 \pm 0.01$$ ρ c = 1.03 ± 0.01  g/cm$$^3$$ 3 ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$ T c for D$$_2$$ 2 O and, particularly, H$$_2$$ 2 O suggest that improved water models are needed for the study of supercooled water. 
    more » « less