β-Ga2O3 is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy, we find the thermodynamically unstable γ-phase is a ubiquitous structural defect in both β-(AlxGa1−x)2O3 films and doped β-Ga2O3 films grown by molecular beam epitaxy. For undoped β-(AlxGa1−x)2O3 films, we observe γ-phase inclusions between nucleating islands of the β-phase at lower growth temperatures (∼500–600 °C). In doped β-Ga2O3, a thin layer of the γ-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the γ-phase layer was most strongly correlated with the growth temperature, peaking at about 600 °C. Ga interstitials are observed in the β-phase, especially near the interface with the γ-phase. By imaging the same region of the surface of a Sn-doped β-(AlxGa1−x)2O3 after ex situ heating up to 400 °C, a γ-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the β-phase. This suggests that the diffusion of Ga interstitials toward the surface is likely the mechanism for growth of the surface γ-phase and more generally that the more-open γ-phase may offer diffusion pathways to be a kinetically favored and early forming phase in the growth of Ga2O3. However, more modeling and simulation of the γ-phase and the interstitials are needed to understand the energetics and kinetics, the impact on electronic properties, and how to control them. 
                        more » 
                        « less   
                    
                            
                            Atomic-scale characterization of structural damage and recovery in Sn ion-implanted β-Ga2O3
                        
                    
    
            β-Ga2O3 is an emerging ultra-wide bandgap semiconductor, holding a tremendous potential for power-switching devices for next-generation high power electronics. The performance of such devices strongly relies on the precise control of electrical properties of β-Ga2O3, which can be achieved by implantation of dopant ions. However, a detailed understanding of the impact of ion implantation on the structure of β-Ga2O3 remains elusive. Here, using aberration-corrected scanning transmission electron microscopy, we investigate the nature of structural damage in ion-implanted β-Ga2O3 and its recovery upon heat treatment with the atomic-scale spatial resolution. We reveal that upon Sn ion implantation, Ga2O3 films undergo a phase transformation from the monoclinic β-phase to the defective cubic spinel γ-phase, which contains high-density antiphase boundaries. Using the planar defect models proposed for the γ-Al2O3, which has the same space group as β-Ga2O3, and atomic-resolution microscopy images, we identify that the observed antiphase boundaries are the {100}1/4 ⟨110⟩ type in cubic structure. We show that post-implantation annealing at 1100 °C under the N2 atmosphere effectively recovers the β-phase; however, nano-sized voids retained within the β-phase structure and a γ-phase surface layer are identified as remanent damage. Our results offer an atomic-scale insight into the structural evolution of β-Ga2O3 under ion implantation and high-temperature annealing, which is key to the optimization of semiconductor processing conditions for relevant device design and the theoretical understanding of defect formation and phase stability. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856662
- PAR ID:
- 10439999
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 121
- Issue:
- 7
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Gallium oxide (Ga2O3) exists in different polymorphic forms, including the trigonal (α), monoclinic (β), cubic (γ), and orthorhombic (κ) phases, each exhibiting distinct structural and electronic properties. Among these, β-Ga2O3 is the most thermodynamically stable and widely studied for high-power electronics applications due to its ability to be grown as high-quality bulk crystals. However, metastable phases such as α-, γ-, and κ-Ga2O3 offer unique properties, including wider bandgap or strong polarization and ferroelectric characteristics, making them attractive for specialized applications. This paper summarizes the radiation hardness of these polymorphs by analyzing the reported changes in minority carrier diffusion length (LD) and carrier removal rates under various irradiation conditions, including protons, neutrons, alpha particles, and gamma rays. β-Ga2O3 demonstrates high radiation tolerance with LD reductions correlated to the introduction of electron traps (E2*, E3, and E4) and gallium–oxygen vacancy complexes (VGa–VO). α-Ga2O3 exhibits slightly better radiation hardness similar to κ-Ga2O3, which also shows minimal LD changes postirradiation, likely due to suppressed defect migration. γ-Ga2O3 is the least thermodynamically stable, but surprisingly is not susceptible to radiation-induced damage, and is stabilized under Ga-deficient conditions. The study highlights the role of polymorph-specific defect dynamics, doping concentrations, and nonuniform electrical properties in determining radiation hardness. We also discuss the effect of radiation exposure on the use of NiO/Ga2O3 heterojunction rectifiers that provide superior electrical performance relative to Schottky rectifiers. The presence of NiO does change some aspects of the response to radiation. Alloying with Al2O3 further modulates the bandgap of Ga2O3 and defect behavior, offering potentially tunable radiation tolerance. These findings provide critical insights into the radiation response of Ga2O3 polymorphs, with implications for their use in aerospace and radiation-hardened power electronics. Future research should focus on direct comparisons of polymorphs under identical irradiation conditions, defect identification, and annealing strategies to enhance radiation tolerance.more » « less
- 
            Phase transitions in metastable α-, κ(ε)-, and γ-Ga2O3 films to thermodynamically stable β-Ga2O3 during annealing in air, N2, and vacuum have been systematically investigated via in situ high-temperature x-ray diffraction (HT-XRD) and scanning electron microscopy (SEM). These respective polymorphs exhibited thermal stability to ∼471–525 °C, ∼773–825 °C, and ∼490–575 °C before transforming into β-Ga2O3, across all tested ambient conditions. Particular crystallographic orientation relationships were observed before and after the phase transitions, i.e., (0001) α-Ga2O3 → (2¯01) β-Ga2O3, (001) κ(ε)-Ga2O3 → (310) and (2¯01) β-Ga2O3, and (100) γ-Ga2O3 → (100) β-Ga2O3. The phase transition of α-Ga2O3 to β-Ga2O3 resulted in catastrophic damage to the film and upheaval of the surface. The respective primary and possibly secondary causes of this damage are the +8.6% volume expansion and the dual displacive and reconstructive transformations that occur during this transition. The κ(ε)- and γ-Ga2O3 films converted to β-Ga2O3 via singular reconstructive transformations with small changes in volume and unchanged surface microstructures.more » « less
- 
            Optimizing thermal anneals of Si-implanted β-Ga2O3 is critical for low resistance contacts and selective area doping. We report the impact of annealing ambient, temperature, and time on the activation of room temperature ion-implanted Si in β-Ga2O3 at concentrations from 5 × 1018 to 1 × 1020 cm−3, demonstrating full activation (>80% activation, mobilities >70 cm2/V s) with contact resistances below 0.29 Ω mm. Homoepitaxial β-Ga2O3 films, grown by plasma-assisted molecular beam epitaxy on Fe-doped (010) substrates, were implanted at multiple energies to yield 100 nm box profiles of 5 × 1018, 5 × 1019, and 1 × 1020 cm−3. Anneals were performed in an ultra-high vacuum-compatible quartz furnace at 1 bar with well-controlled gas compositions. To maintain β-Ga2O3 stability, pO2 must be greater than 10−9 bar. Anneals up to pO2 = 1 bar achieve full activation at 5 × 1018 cm−3, while 5 × 1019 cm−3 must be annealed with pO2 ≤ 10−4 bar, and 1 × 1020 cm−3 requires pO2 < 10−6 bar. Water vapor prevents activation and must be maintained below 10−8 bar. Activation is achieved for anneal temperatures as low as 850 °C with mobility increasing with anneal temperatures up to 1050 °C, though Si diffusion has been reported above 950 °C. At 950 °C, activation is maximized between 5 and 20 min with longer times resulting in decreased carrier activation (over-annealing). This over-annealing is significant for concentrations above 5 × 1019 cm−3 and occurs rapidly at 1 × 1020 cm−3. Rutherford backscattering spectrometry (channeling) suggests that damage recovery is seeded from remnant aligned β-Ga2O3 that remains after implantation; this conclusion is also supported by scanning transmission electron microscopy showing retention of the β-phase with inclusions that resemble the γ-phase.more » « less
- 
            β-Ga2O3 is an ultrawide bandgap semiconductor that is attracting much attention for applications in next-generation high-power, deep UV, and extreme-environment devices. Hydrogen impurities have been found to have a strong effect on the electrical properties of β-Ga2O3. This Tutorial is a survey of what has been learned about O–H centers in β-Ga2O3 from their vibrational properties. More than a dozen, O–H centers have been discovered by infrared absorption spectroscopy. Theory predicts defect structures with H trapped at split configurations of a Ga(1) vacancy that are consistent with the isotope and polarization dependence of the O–H vibrational spectra that have been measured by experiment. Furthermore, O–H centers in β-Ga2O3 have been found to evolve upon thermal annealing, giving defect reactions that modify conductivity. While much progress has been made toward understanding the microscopic properties and reactions of O–H centers in β-Ga2O3, many questions are discussed that remain unanswered. A goal of this Tutorial is to inspire future research that might solve these puzzles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
