skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A DEAD-box RNA helicase mediates meiotic silencing by unpaired DNA
Abstract During the sexual phase of Neurospora crassa, unpaired genes are subject to a silencing mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD targets the transcripts of an unpaired gene and utilizes typical RNA interference factors for its process. Using a reverse genetic screen, we have identified a meiotic silencing gene called sad-9, which encodes a DEAD-box RNA helicase. While not essential for vegetative growth, SAD-9 plays a crucial role in both sexual development and MSUD. Our results suggest that SAD-9, with the help of the SAD-2 scaffold protein, recruits the SMS-2 Argonaute to the perinuclear region, the center of MSUD activity.  more » « less
Award ID(s):
1715534
PAR ID:
10440002
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
G3: Genes, Genomes, Genetics
Volume:
13
Issue:
8
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In the filamentous fungus Neurospora crassa, genes unpaired during meiosis are silenced by a process known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) proteins, such as Dicer and Argonaute, to target homologous mRNAs for silencing. Previously, we demonstrated that nuclear cap-binding proteins NCBP1 and NCBP2 are involved in MSUD. We report here that SAD-8, a protein similar to human NCBP3, also mediates silencing. Although SAD-8 is not essential for either vegetative or sexual development, it is required for MSUD. SAD-8 localizes predominantly in the nucleus and interacts with both NCBP1 and NCBP2. Similar to NCBP1 and NCBP2, SAD-8 interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), further implicating the involvement of cap-binding proteins in silencing. 
    more » « less
  2. Abstract In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins. 
    more » « less
  3. Meiotic silencing by unpaired DNA (MSUD) is a gene silencing process that occurs within meiotic cells of Neurospora crassa and other fungi. We have previously developed a high-throughput screen to identify suppressors of this silencing pathway. Here, a list of MSUD suppressor candidates from a single pass of the first 84 plates of the Neurospora knockout library is provided. 
    more » « less
  4. null (Ed.)
    Meiotic drive elements cause their own preferential transmission following meiosis. In fungi, this phenomenon takes the shape of spore killing, and in the filamentous ascomycete Neurospora sitophila , the Sk-1 spore killer element is found in many natural populations. In this study, we identify the gene responsible for spore killing in Sk-1 by generating both long- and short-read genomic data and by using these data to perform a genome-wide association test. We name this gene Spk-1 . Through molecular dissection, we show that a single 405-nt-long open reading frame generates a product that both acts as a poison capable of killing sibling spores and as an antidote that rescues spores that produce it. By phylogenetic analysis, we demonstrate that the gene has likely been introgressed from the closely related species Neurospora hispaniola , and we identify three subclades of N. sitophila , one where Sk-1 is fixed, another where Sk-1 is absent, and a third where both killer and sensitive strain are found. Finally, we show that spore killing can be suppressed through an RNA interference-based genome defense pathway known as meiotic silencing by unpaired DNA. Spk-1 is not related to other known meiotic drive genes, and similar sequences are only found within Neurospora . These results shed light on the diversity of genes capable of causing meiotic drive, their origin and evolution, and their interaction with the host genome. 
    more » « less
  5. ABSTRACT Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum , we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. IMPORTANCE Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies. 
    more » « less