skip to main content


This content will become publicly available on July 6, 2024

Title: Investigating water safety in multi-purpose buildings used as an elementary school and plumbing remediation effectiveness
Three buildings that were repurposed for use as an elementary school were shutdown for three months in response to the pandemic. Building cold and hot water quality was monitored before reopening to detect and resolve chemical and microbiological problems. The authors collected first draw pre-flush and post-flush water samples. First draw water samples did not contain detectable disinfectant residual, but nickel and lead sometimes exceeded the health-based action limits for cold water (max. 144 μg Ni/L, 3.4 μg Pb/L). Stagnant cold water at a bathroom sink (188 MPN/100 mL) and drinking water fountain (141.6 MPN/100 mL), in the same building, exceeded the L . pneumophila thresholds advised by the World Health Organization (WHO) (10 CFU/mL) and American Industrial Hygiene Association (AIHA) (100 CFU/mL). Fixture flushing was conducted to remove cold and hot stagnant water and no L . pneumophila was detected immediately after flushing. Two weeks after no subsequent building water use, chemical and microbiological contaminant levels were found to be similar to levels prior to flushing with one exception. The maximum L . pneumophila level (kitchen sink, hot water: 61.1 MPN/100 mL) was found in a different building than the prior maximum detections. No repeat positive locations for L . pneumophila were found during the second visit, but new fixtures were positive the organism. When this study was conducted no evidence-based guidelines for plumbing recommissioning were available. A single plumbing flush reduced heavy metal and L . pneumophila levels below WHO and AIHA thresholds in all three buildings. Additional work is needed to examine the role of building size, type and plumbing design on fixture water quality in shutdown buildings.  more » « less
Award ID(s):
2039498 2027049
NSF-PAR ID:
10440058
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Herrera, Manuel
Date Published:
Journal Name:
PLOS Water
Volume:
2
Issue:
7
ISSN:
2767-3219
Page Range / eLocation ID:
e0000141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Unregulated private wells are understudied potential sources of community-acquired Legionnaires’ disease. Here we conducted a comprehensive survey of 44 homes supplied by private wells in Wake County, North Carolina, quantifying Legionella spp. DNA, Legionella pneumophila DNA, and total bacterial 16S rRNA genes via real-time polymerase chain reaction in hot and cold drinking water samples, along with culturable L. pneumophila via IDEXX Legiolert in cold drinking water samples. Legionella spp. DNA, L. pneumophila DNA and culturable L. pneumophila were detected in 100, 65·5 and 15·9% of the 44 homes, respectively, and culturable levels were comparable to some municipal surveys applying the same methods. Total coliforms and Escherichia coli were monitored as representative faecal indicators and were found in 20·4 and 0·0% of homes. Within certain sample types, Legionella spp. and L. pneumophila gene copy numbers were positively associated with total bacteria (i.e. total 16S rRNA genes) and water softener use, but were not associated with faecal indicator bacteria, inorganic water parameters or other well characteristics. These findings confirm that occurrence of Legionella and L. pneumophila is highly variable in private wells.

    Significance and Impact of the Study

    Legionella is the leading identified cause of waterborne disease outbreaks associated with US municipal water systems. While Legionella is known to occur naturally in groundwater, prior efforts to characterize its occurrence in unregulated private wells are limited to sampling at the wellhead and not in the home plumbing where Legionella can thrive. This work documents much higher levels of Legionella in home plumbing versus water directly from private wells and examines factors associated with higher Legionella occurrence.

     
    more » « less
  2. Extensive building closures due to the unprecedented COVID-19 pandemic resulted in long-term water stagnation within the plumbing of large buildings. This study examined water chemical quality deterioration in ten large buildings after prolonged stagnation caused by the closure of a university campus in response to the COVID-19 pandemic. Volume-based and constant-duration flushing protocols were implemented to replace stagnant water with fresh drinking water. The effectiveness of the developed water flushing protocols was examined by monitoring the disinfectant residuals, heavy metal concentrations and temperature for water samples collected from the buildings' point of entry (POE) and select water fixtures. More than 14 m 3 of water were flushed in all ten large buildings. The results demonstrated a significantly greater average total chlorine residual concentration in POE water samples collected after flushing (1.1 mg L −1 ) compared to the stagnant condition (0.6 mg L −1 ). For water samples collected from fixtures during the extended stagnation, chlorine was absent in 71% of samples from academic buildings and 69% of samples from athletic buildings. The effectiveness of flushing practices is underscored by increasing the median total chlorine concentration from <0.1 to 1.0 mg L −1 in academic buildings and from <0.1 to 0.75 mg L −1 in athletic buildings. Furthermore, the concentrations of Pb, Zn, and Cu had decreased following the water flushing, but the concentration of Fe had increased in some buildings. This study could be beneficial to prepare for prolonged water stagnation events including but not limited to pandemics. 
    more » « less
  3. null (Ed.)
    Flint, MI experienced two outbreaks of Legionnaires’ Disease (LD) during the summers of 2014 and 2015, coinciding with use of Flint River as a drinking water source without corrosion control. Using simulated distribution systems (SDSs) followed by stagnant simulated premise (i.e., building) plumbing reactors (SPPRs) containing cross-linked polyethylene (PEX) or copper pipe, we reproduced trends in water chemistry and Legionella proliferation observed in the field when Flint River versus Detroit water were used before, during, and after the outbreak. Specifically, due to high chlorine demand in the SDSs, SPPRs with treated Flint River water were chlorine deficient and had elevated L. pneumophila numbers in the PEX condition. SPPRs with Detroit water, which had lower chlorine demand and higher residual chlorine, lost all culturable L. pneumophila within two months. L. pneumophila also diminished more rapidly with time in Flint River SPPRs with copper pipe, presumably due to the bacteriostatic properties of elevated copper concentrations caused by lack of corrosion control and stagnation. This study confirms hypothesized mechanisms by which the switch in water chemistry, pipe materials, and different flow patterns in Flint premise plumbing may have contributed to observed LD outbreak patterns. 
    more » « less
  4. Abstract A novel treatment method, consisting of pea-gravel with a marine coating supplemented with alkyldimethylbenzylammonium chloride (ADBAC or benzalkonium chloride), has been examined for its antimicrobial performance and coating stability in aqueous environments. Initial column studies examining the porous media's ability to reduce bacterial loads in heating, ventilation, and air conditioning (HVAC) water found average reductions of 94% from pre-flush levels (106 colony forming unit (CFU)/mL) when assessed with R2A spread plates and 83% reductions with SimPlates. There was no observed statistical difference between the average of pre- and post-flush waters from four tests of the media without ADBAC. Taxonomic identification, by 16S rRNA gene sequencing, of colonies drawn from pre- and post-ABDAC R2A plates showed similarities with taxa observed in high frequency from prior cultivation-independent surveys of other cooling tower systems. With this proof of concept, two versions of the media were evaluated for potential coating components released during aqueous exposure. Neither released measurable volatile organic compounds (VOC) components, but one did release bisphenol A and ABDAC compounds. Subsequent column tests of the more durable coating were conducted using cultures of interest in industrial water and demonstrated significant reductions in neutralized post-column Enterococcus faecalis samples and near complete loss of Legionella pneumophila in non-neutralized fluids, but lower reductions in Pseudomonas aeruginosa. 
    more » « less
  5. Abstract

    Commercial and institutional buildings now experience weeks and even months with below‐normal occupancy due to remote work/learning, which results in reduced water use and has the potential to adversely impact water quality. This study monitored the variations in water quality in multiple university buildings during several months of below‐normal occupancy followed by several months of normal occupancy. The levels of free chlorine, copper, and cellular ATP in water varied within buildings and between buildings. Using Wi‐Fi activity as a surrogate for building occupancy, the free chlorine concentration in water increased as Wi‐Fi counts increased. The copper concentration in building water was higher when the occupancy was below‐normal compared with normal occupancy, and the copper concentration decreased as Wi‐Fi counts increased. Throughout the study, flushing a fixture at the time of use decreased the concentrations of copper and cellular ATP and increased the concentration of free chlorine.

     
    more » « less