skip to main content

This content will become publicly available on May 1, 2024

Title: Multivariate Calibration of the SWAT Model Using Remotely Sensed Datasets
Remotely sensed hydrologic variables, in conjunction with streamflow data, have been increasingly used to conduct multivariable calibration of hydrologic model parameters. Here, we calibrated the Soil and Water Assessment Tool (SWAT) model using different combinations of streamflow and remotely sensed hydrologic variables, including Atmosphere–Land Exchange Inverse (ALEXI) Evapotranspiration (ET), Moderate Resolution Imaging Spectroradiometer (MODIS) ET, and Soil MERGE (SMERGE) soil moisture. The results show that adding remotely sensed ET and soil moisture to the traditionally used streamflow for model calibration can impact the number and values of parameters sensitive to hydrologic modeling, but it does not necessarily improve the model performance. However, using remotely sensed ET or soil moisture data alone led to deterioration in model performance as compared with using streamflow only. In addition, we observed large discrepancies between ALEXI or MODIS ET data and the choice between these two datasets for model calibration can have significant implications for the performance of the SWAT model. The use of different combinations of streamflow, ET, and soil moisture data also resulted in noticeable differences in simulated hydrologic processes, such as runoff, percolation, and groundwater discharge. Finally, we compared the performance of SWAT and the SWAT-Carbon (SWAT-C) model under different multivariate calibration setups, and these two models exhibited pronounced differences in their performance in the validation period. Based on these results, we recommend (1) the assessment of various remotely sensed data (when multiple options available) for model calibration before choosing them for complementing the traditionally used streamflow data and (2) that different model structures be considered in the model calibration process to support robust hydrologic modeling.  more » « less
Award ID(s):
1828910 1639327
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thenkabail, Prasad S. (Ed.)

    Physically based hydrologic models require significant effort and extensive information for development, calibration, and validation. The study explored the use of the random forest regression (RFR), a supervised machine learning (ML) model, as an alternative to the physically based Soil and Water Assessment Tool (SWAT) for predicting streamflow in the Rio Grande Headwaters near Del Norte, a snowmelt-dominated mountainous watershed of the Upper Rio Grande Basin. Remotely sensed data were used for the random forest machine learning analysis (RFML) and RStudio for data processing and synthesizing. The RFML model outperformed the SWAT model in accuracy and demonstrated its capability in predicting streamflow in this region. We implemented a customized approach to the RFR model to assess the model’s performance for three training periods, across 1991–2010, 1996–2010, and 2001–2010; the results indicated that the model’s accuracy improved with longer training periods, implying that the model trained on a more extended period is better able to capture the parameters’ variability and reproduce streamflow data more accurately. The variable importance (i.e., IncNodePurity) measure of the RFML model revealed that the snow depth and the minimum temperature were consistently the top two predictors across all training periods. The paper also evaluated how well the SWAT model performs in reproducing streamflow data of the watershed with a conventional approach. The SWAT model needed more time and data to set up and calibrate, delivering acceptable performance in annual mean streamflow simulation, with satisfactory index of agreement (d), coefficient of determination (R2), and percent bias (PBIAS) values, but monthly simulation warrants further exploration and model adjustments. The study recommends exploring snowmelt runoff hydrologic processes, dust-driven sublimation effects, and more detailed topographic input parameters to update the SWAT snowmelt routine for better monthly flow estimation. The results provide a critical analysis for enhancing streamflow prediction, which is valuable for further research and water resource management, including snowmelt-driven semi-arid regions.

    more » « less
  2. Over the last decade, autocalibration routines have become commonplace in watershed modeling. This approach is most often used to simulate a streamflow at a basin’s outlet. In alpine settings, spring/early summer snowmelt is by far the dominant signal in this system. Therefore, there is great potential for a modeled watershed to underperform during other times of the year. This tendency has been noted in many prior studies. In this work, the Soil and Water Assessment Tool (SWAT) model was auto-calibrated with the SUFI-2 routine. A mountainous watershed from Idaho was examined (Upper North Fork). In this study, this basin was calibrated using three estimates of evapotranspiration (ET): Moderate Resolution Imagining Spectrometer (MODIS), Simplified Surface Energy Balance, and Global Land Evaporation: the Amsterdam Model. The MODIS product in particular, had the greatest utility in helping to constrain SWAT parameters that have a high sensitivity to ET. Streamflow simulations that utilize these ET parameter values have improved recessional and summertime streamflow performances during calibration (2007 to 2011) and validation (2012 to 2014) periods. Streamflow performance was monitored with standard objective metrics (Bias and Nash Sutcliffe coefficients) that quantified overall, recessional, and summertime peak flows. This approach yielded dramatic enhancements for all three observations. These results demonstrate the utility of this approach for improving watershed modeling fidelity outside the main snowmelt season. 
    more » « less
  3. null (Ed.)
    Abstract Soil moisture (SM) and evapotranspiration (ET) are key variables of the terrestrial water cycle with a strong relationship. This study examines remotely sensed soil moisture and evapotranspiration data assimilation (DA) with the aim of improving drought monitoring. Although numerous efforts have gone into assimilating satellite soil moisture observations into land surface models to improve their predictive skills, little attention has been given to the combined use of soil moisture and evapotranspiration to better characterize hydrologic fluxes. In this study, we assimilate two remotely sensed datasets, namely, Soil Moisture Operational Product System (SMOPS) and MODIS evapotranspiration (MODIS16 ET), at 1-km spatial resolution, into the VIC land surface model by means of an evolutionary particle filter method. To achieve this, a fully parallelized framework based on model and domain decomposition using a parallel divide-and-conquer algorithm was implemented. The findings show improvement in soil moisture predictions by multivariate assimilation of both ET and SM as compared to univariate scenarios. In addition, monthly and weekly drought maps are produced using the updated root-zone soil moisture percentiles over the Apalachicola–Chattahoochee–Flint basin in the southeastern United States. The model-based estimates are then compared against the corresponding U.S. Drought Monitor (USDM) archive maps. The results are consistent with the USDM maps during the winter and spring season considering the drought extents; however, the drought severity was found to be slightly higher according to DA method. Comparing different assimilation scenarios showed that ET assimilation results in wetter conditions comparing to open-loop and univariate SM DA. The multivariate DA then combines the effects of the two variables and provides an in-between condition. 
    more » « less
  4. Abstract

    Small streams often lack reliable hydrological data. Environmental agencies play a key role in providing such data; however, these agencies are often challenged by the growing monitoring needs and lack of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen science program that collects stream stage and stream temperature observations, improves a hydrologic model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with different interarrival times of the observations. We tested whether stream stage and stream temperature observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool (SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman filter. This framework allowed us to integrate observation error, track the variability of model parameters, and simulate daily streamflow and stream temperature across the watershed. Measures of daily model performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (Ef‐mod), refined index of agreement (dr), and relative bias (Bias). For all calibration sites, estimates of streamflow improved after data assimilation compared to simulations based on initial/default SWAT parameters. Different measures of model performance emerged based on the interarrival times of the observations. Results demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve SWAT hydrological models and capture central tendency.

    more » « less
  5. Abstract

    Accurate soil moisture and streamflow data are an aspirational need of many hydrologically relevant fields. Model simulated soil moisture and streamflow hold promise but models require validation prior to application. Calibration methods are commonly used to improve model fidelity but misrepresentation of the true dynamics remains a challenge. In this study, we leverage soil parameter estimates from the Soil Survey Geographic (SSURGO) database and the probability mapping of SSURGO (POLARIS) to improve the representation of hydrologic processes in the Weather Research and Forecasting Hydrological modeling system (WRF‐Hydro) over a central California domain. Our results show WRF‐Hydro soil moisture exhibits increased correlation coefficients (r), reduced biases, and increased Kling‐Gupta Efficiencies (KGEs) across seven in situ soil moisture observing stations after updating the model's soil parameters according to POLARIS. Compared to four well‐established soil moisture data sets including Soil Moisture Active Passive data and three Phase 2 North American Land Data Assimilation System land surface models, our POLARIS‐adjusted WRF‐Hydro simulations produce the highest mean KGE (0.69) across the seven stations. More importantly, WRF‐Hydro streamflow fidelity also increases, especially in the case where the model domain is set up with SSURGO‐informed total soil thickness. The magnitude and timing of peak flow events are better captured,rincreases across nine United States Geological Survey stream gages, and the mean KGE across seven of the nine gages increases from 0.12 to 0.66. Our pre‐calibration parameter estimate approach, which is transferable to other spatially distributed hydrological models, can substantially improve a model's performance, helping reduce calibration efforts and computational costs.

    more » « less