Abstract A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of acloso‐borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10−4 S cm−2at room temperature and stability over a wide temperature range from −35 to 80 °C with a high lithium transference number ( = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of acloso‐borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials.
more »
« less
Gel polymer electrolyte for reversible metal electrodeposition dynamic windows enables dual-working electrodes for faster switching and reflectivity control
Dynamic windows based on reversible metal electrodeposition are an attractive way to enhance the energy efficiency of buildings and show great commercial potential. Dynamic windows that rely on liquid electrolytes are at risk of short circuiting when two electrodes contact, especially at larger-scale. Here we developed a poly (vinyl alcohol) (PVA) gel polymer electrolyte (GPE) with 85% transmittance, that is, sufficiently stiff to act as a separator. The GPE is implemented into windows that exhibit comparable electrochemical and optical properties to windows using a liquid electrolyte. Furthermore, the GPE enables the fabrication of windows with dual-working electrodes (WE) and a metal mesh counter electrode in the center without short-circuiting. Our dual-WE PVA GPE window reaches the 0.1% transmittance state in 101 s, more than twice the speed of liquid windows with one working electrode (207 s). Additionally, each side of the dual-WE GPE window can be tinted individually to demonstrate varied optical effects (i.e., more reflective, or more absorptive), providing users and intelligent building systems with greater control over the appearance and performance of the windows in a single device architecture.
more »
« less
- Award ID(s):
- 2127308
- PAR ID:
- 10440169
- Date Published:
- Journal Name:
- Frontiers in Nanotechnology
- Volume:
- 4
- ISSN:
- 2673-3013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dynamic windows allow user control over light and heat flow to save energy and maximize comfort. Reversible metal electrodeposition (RME) dynamic windows can uniquely tint to a color‐neutral privacy state (0.1% visible light transmission). The design parameters of transparent metal mesh counter electrodes for high‐contrast RME dynamic windows: high transparency, charge capacity and surface area with low haze, sheet resistance and cost are discussed, concluding that woven metal meshes meet these design parameters. Electroplated current is measured on an indium tin oxide electrode and two meshes with different wire spacings, showing the meshes’ cylindrical geometry enable them to draw more current per square area. The mesh material composition is analyzed to ensure cycling durability in a CuBi electrolyte by developing a transparent mesh with an inert core (stainless steel, SS), a thin Au coating, and a high charge‐capacity (1.5 C cm−2) CuBi outer coating. The study demonstrates that the films maintain a consistent Cu:Bi ratio and optical properties after 250 privacy cycles or 1500 cycles to 10% transmission, showing that the Cu and Bi coating is effective in keeping the films from becoming Cu rich with cycling. Finally, a 100 cm2device with excellent uniformity and color neutrality is demonstrated.more » « less
-
Reversible metal electrodeposition (RME) is an emerging and promising method for designing dynamic windows with electrically controllable transmission, excellent color neutrality, and wide dynamic range. Despite its very negative deposition voltage, Zn is a viable option for metal-based dynamic windows due to its fast switching kinetics and reversibility. In this manuscript, we describe the construction of Zn RME dynamic windows using water-in-salt electrolytes (WISe). By systematically comparing different electrolytes, we study the effects of different WISe components on Zn RME spectroelectrochemistry. This insight allows us to design practical two-electrode 25 cm2 Zn dynamic windows, the first examples of RME devices with WISe. We also establish a link between the morphology of the Zn electrodeposits and the optical contrast of the transparent electrodes during switching. Taken together, these studies highlight a potential design strategy for the construction of RME dynamic windows.more » « less
-
As the energy storage markets demand increased capacity of rechargeable batteries, Li metal anodes have regained major attention due to their high theoretical specific capacity. However, Li anodes tend to have dendritic growth and constant electrolyte consumption upon cycling, which lead to safety concerns, low Coulombic efficiency, and short cycle life of the battery. In this work, both conductive and non-conductive 3D porous hosts were coupled with a viscous (melt) polymer electrolyte. The cross-section of the hosts showed good contact between porous hosts and the melt polymer electrolyte before and after extensive cycling, indicating that the viscous electrolyte successfully refilled the space upon Li stripping. Upon deep Li deposition/stripping cycling (5 mAh cm-2), the non-conductive host with the viscous electrolyte successfully cycled, while conductive host allowed rapid short circuiting. Post-mortem cross-sectional imaging showed that the Li deposition was confined to the top layers of the host. COMSOL simulations indicated that current density was higher and more restricted to the top of the conductive host with the polymer electrolyte than the liquid electrolyte. This resulted in quicker short circuiting of the polymer electrolyte cell during deep cycling. Thus, the non-conductive 3D host is preferred for coupling with the melt polymer electrolyte.more » « less
-
Plasmon-mediated electrocatalysis based on plasmonic gold nanoparticles (Au NPs) has emerged as a promising approach to facilitate electrochemical reactions with the introduction of light to excite the plasmonic electrodes. We have investigated the electrochemical oxidation of 4-(hydroxymethyl)benzoic acid (4-HMBA) on gold (Au), nickel (Ni), and platinum (Pt) metal working electrodes in alkaline electrolytes. Au has the lowest onset potential for catalyzing the electrooxidation of 4-HMBA among the three metals in base, whereas Pt does not catalyze the electrooxidation of 4-HMBA under alkaline conditions, although it is conventionally a good electrocatalyst for alcohol oxidation. Both 4-carboxybenzaldehyde and terephthalic acid are detected as the products of electrochemical oxidation of 4-HMBA on the Au working electrode by high-performance liquid chromatography . The electrodeposited Au NPs on indium tin oxide (ITO)-coated glass is further utilized as the working electrode for the 4-HMBA electrooxidation. With its broad absorption in the visible and near-infrared range, we show that the Au NPs on the ITO electrode could enhance the electrochemical oxidation of 4-HMBA under green and red LED light illuminations (505 and 625 nm). A possible reaction mechanism is proposed for the electrochemical oxidation of 4-HMBA on Au working electrodes in an alkaline electrolyte.more » « less
An official website of the United States government

