- Award ID(s):
- 1904196
- Publication Date:
- NSF-PAR ID:
- 10312742
- Journal Name:
- Journal of The Electrochemical Society
- ISSN:
- 0013-4651
- Sponsoring Org:
- National Science Foundation
More Like this
-
Lithium metal as an anode has been widely accepted due to its higher negative electrochemical potential and theoretical capacity. Nevertheless, the existing safety and cyclability issues limit lithium metal anodes from practical use in high-energy density batteries. Repeated Li deposition and dissolution processes upon cycling lead to the formation of dendrites at the interface which results in reduced Li availability for electrochemical reactions, disruption in Li transport through the interface and increased safety concerns due to short circuiting. Here, we demonstrate a novel strategy using Ionic Liquid Crystals (ILCs) as the electrolyte cum pseudo-separator to suppress dendrite growth with their anisotropic properties controlling Li-ion mass transport. A thermotropic ILC with two-dimensional Li-ion conducting pathways was synthesized and characterized. Microscopic and spectroscopic analyses elucidate that the ILC formed with a smectic A phase, which can be utilized for wide temperature window operation. The results of electrochemical studies corroborate the efficacy of ILC electrolytes in mitigating dendrite formation even after 850 hours and it is further substantiated by numerical simulation and the mechanism involved in dendritic suppression was deduced.
-
Transition metal dichalcogenides (TMDs) such as MoSe2 have continued to generate interest in the engineering community because of their unique layered morphology—the strong in-plane chemical bonding between transition metal atoms sandwiched between two chalcogen atoms and the weak physical attraction between adjacent TMD layers provides them with not only chemical versatility but also a range of electronic, optical, and chemical properties that can be unlocked upon exfoliation into individual TMD layers. Such a layered morphology is particularly suitable for ion intercalation as well as for conversion chemistry with alkali metal ions for electrochemical energy storage applications. Nonetheless, host of issues including fast capacity decay arising due to volume changes and from TMD’s degradation reaction with electrolyte at low discharge potentials have restricted use in commercial batteries. One approach to overcome barriers associated with TMDs’ chemical stability functionalization of TMD surfaces by chemically robust precursor-derived ceramics or PDC materials, such as silicon oxycarbide (SiOC). SiOC-functionalized TMDs have shown to curb capacity degradation in TMD and improve long term cycling as Li-ion battery (LIBs) electrodes. Herein, we report synthesis of such a composite in which MoSe2 nanosheets are in SiOC matrix in a self-standing fiber mat configuration. This was achieved via electrospinningmore »
-
Despite significant interest toward solid-state electrolytes owing to their superior safety in comparison to liquid-based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high-power density batteries. Here, a novel quasi-solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm(-2) at room temperature. The cycling overpotential is dropped by 75% in comparison to BP-free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI-) pairs and ethylene-oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid-state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long-life cycling.
-
In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquidmore »
-
Abstract The development of practical lithium–sulfur (Li–S) batteries with prolonged cycle life and high Coulombic efficiency is limited by both parasitic reactions from dissolved polysulfides and mossy lithium deposition. To address these challenges, here lithium trithiocarbonate (Li2CS3)-coated lithium sulfide (Li2S) is employed as a dual-function cathode material to improve the cycling performance of Li–S batteries. Interestingly, at the cathode, Li2CS3 forms an oligomer-structured layer on the surface to suppress polysulfide shuttle. The presence of Li2CS3 alters the conventional sulfur reaction pathway, which is supported by material characterization and density functional theory calculation. At the anode, a stable in situ solid electrolyte interphase layer with a lower Li-ion diffusion barrier is formed on the Li-metal surface to engender enhanced lithium plating/stripping performance upon cycling. Consequently, the obtained anode-free full cells with Li2CS3 exhibit a superior capacity retention of 51% over 125 cycles, whereas conventional Li2S cells retain only 26%. This study demonstrates that Li2CS3 inclusion is an efficient strategy for designing high-energy-density Li–S batteries with extended cycle life.