skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra , including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris , an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type–specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.  more » « less
Award ID(s):
1829158 1923259
PAR ID:
10440226
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Genome Research
Volume:
33
Issue:
2
ISSN:
1088-9051
Page Range / eLocation ID:
283 to 298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY WUSCHEL (WUS) is transcription factor vital for stem cell proliferation in plant meristems. In maize,ZmWUS1is expressed in the inflorescence meristem, including the central zone, the reservoir of stem cells.ZmWUS1overexpression in theBarren inflorescence3mutant leads to defects in inflorescence development. Here, single-cell ATAC-seq analysis shows thatZmWUS1overexpression alters chromatin accessibility throughout the central zone. The CAATAATGC motif, a known homeodomain recognition site, is predominantly observed in the regions with increased chromatin accessibility suggesting ZmWUS1 is an activator in the central zone. Regions with decreased chromatin accessibility feature various motifs and are adjacent toAUXIN RESPONSE FACTORgenes, revealing negative regulation of auxin signaling in the central zone. DAP-seq of ZmWUS1 identified the TGAATGAA motif, abundant in epidermal accessible chromatin compared to the central zone. These findings highlight ZmWUS1’s context-dependent mechanisms for stem cell maintenance in the inflorescence meristem. 
    more » « less
  2. Mutations in A-type nuclear lamins cause dilated cardiomyopathy, which is postulated to result from dysregulated gene expression due to changes in chromatin organization into active and inactive compartments. To test this, we performed genome-wide chromosome conformation analyses in human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) with a haploinsufficient mutation for lamin A/C. Compared with gene-corrected cells, mutant hiPSC-CMs have marked electrophysiological and contractile alterations, with modest gene expression changes. While large-scale changes in chromosomal topology are evident, differences in chromatin compartmentalization are limited to a few hotspots that escape segregation to the nuclear lamina and inactivation during cardiogenesis. These regions exhibit up-regulation of multiple noncardiac genes including CACNA1A, encoding for neuronal P/Q-type calcium channels. Pharmacological inhibition of the resulting current partially mitigates the electrical alterations. However, chromatin compartment changes do not explain most gene expression alterations in mutant hiPSC-CMs. Thus, global errors in chromosomal compartmentation are not the primary pathogenic mechanism in heart failure due to lamin A/C haploinsufficiency. 
    more » « less
  3. Abstract Motivation Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. Results We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. Availability and implementation The code is available at https://github.com/kundajelab/ChromDragoNN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. 3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of 26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop quantification and report that loops generally occur with low probabilities, generalizing recent live imaging results to the whole genome. 
    more » « less
  5. Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF–chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation. 
    more » « less