skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optofluidic memory and self-induced nonlinear optical phase change for reservoir computing in silicon photonics
Abstract Nanophotonics allows to employ light-matter interaction to induce nonlinear optical effects and realize non-conventional memory and computation capabilities, however to date, light-liquid interaction was not considered as a potential mechanism to achieve computation on a nanoscale. Here, we experimentally demonstrate self-induced phase change effect which relies on the coupling between geometric changes of thin liquid film to optical properties of photonic waveguide modes, and then employ it for neuromorphic computing. In our optofluidic silicon photonics system we utilize thermocapillary-based deformation of thin liquid film capable to induce nonlinear effect which is more than one order of magnitude higher compared to the more traditional heat-based thermo-optical effect, and allowing operation as a nonlinear actuator and memory element, both residing at the same compact spatial region. The resulting dynamics allows to implement Reservoir Computing at spatial region which is approximately five orders of magnitude smaller compared to state-of-the-art experimental liquid-based systems.  more » « less
Award ID(s):
2023730 2217453
PAR ID:
10440230
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The realization of deterministic photon–photon gates is a central goal in optical quantum computation and engineering. A longstanding challenge is that optical nonlinearities in scalable, room-temperature material platforms are too weak to achieve the required strong coupling, due to the critical loss-confinement trade-off in existing photonic structures. In this work, we introduce a spatio-temporal confinement method, dispersion-engineered temporal trapping, to circumvent the trade-off, enabling a route to all-optical strong coupling. Temporal confinement is imposed by an auxiliary trap pulse via cross-phase modulation, which, combined with the spatial confinement of a waveguide, creates a “flying cavity” that enhances the nonlinear interaction strength by at least an order of magnitude. Numerical simulations confirm that temporal trapping confines the multimode nonlinear dynamics to a single-mode subspace, enabling high-fidelity deterministic quantum gate operations. With realistic dispersion engineering and loss figures, we show that temporally trapped ultrashort pulses could achieve strong coupling on near-term nonlinear nanophotonic platforms. Our results highlight the potential of ultrafast nonlinear optics to become the first scalable, high-bandwidth, and room-temperature platform that achieves strong coupling, opening a path to quantum computing, simulation, and light sources. 
    more » « less
  2. Acousto-optic imaging (AOI) enables optical-contrast imaging deep inside scattering samples via localized ultrasound-modulation of scattered light. While AOI allows optical investigations at depths, its imaging resolution is inherently limited by the ultrasound wavelength, prohibiting microscopic investigations. Here, we propose a computational imaging approach that allows optical diffraction-limited imaging using a conventional AOI system. We achieve this by extracting diffraction-limited imaging information from speckle correlations in the conventionally detected ultrasound-modulated scattered-light fields. Specifically, we identify that since “memory-effect” speckle correlations allow estimation of the Fourier magnitude of the field inside the ultrasound focus, scanning the ultrasound focus enables robust diffraction-limited reconstruction of extended objects using ptychography (i.e., we exploit the ultrasound focus as the scanned spatial-gate probe required for ptychographic phase retrieval). Moreover, we exploit the short speckle decorrelation-time in dynamic media, which is usually considered a hurdle for wavefront-shaping- based approaches, for improved ptychographic reconstruction. We experimentally demonstrate noninvasive imaging of targets that extend well beyond the memory-effect range, with a 40-times resolution improvement over conventional AOI. 
    more » « less
  3. Travel-time computation with large transportation networks is often computationally intensive for two main reasons: 1) large computer memory is required to handle large networks; and 2) calculating shortest-distance paths over large networks is computing intensive. Therefore, previous research tends to limit their spatial extent to reduce computational intensity or resolve computational intensity with advanced cyberinfrastructure. In this context, this article describes a new Spatial Partitioning Algorithm for Scalable Travel-time Computation (SPASTC) that is designed based on spatial domain decomposition with computer memory limit explicitly considered. SPASTC preserves spatial relationships required for travel-time computation and respects a user-specified memory limit, which allows efficient and large-scale travel-time computation within the given memory limit. We demonstrate SPASTC by computing spatial accessibility to hospital beds across the conterminous United States. Our case study shows that SPASTC achieves significant efficiency and scalability making the travel-time computation tens of times faster. 
    more » « less
  4. Thin-film lithium niobate is an attractive integrated photonics platform due to its low optical loss and favorable optical nonlinear and electro-optic properties. However, in applications such as second harmonic generation, frequency comb generation, and microwave-to-optics conversion, the device performance is strongly impeded by the photorefractive effect inherent in thin-film lithium niobate. In this paper, we show that the dielectric cladding on a lithium niobate microring resonator has a significant influence on the photorefractive effect. By removing the dielectric cladding layer, the photorefractive effect in lithium niobate ring resonators can be effectively mitigated. Our work presents a reliable approach to control the photorefractive effect on thin-film lithium niobate and will further advance the performance of integrated classical and quantum photonic devices based on thin-film lithium niobate. 
    more » « less
  5. Abstract Enhanced and controlled light absorption, as well as field confinement in optically thin materials, are pivotal for energy‐efficient optoelectronics and nonlinear optical devices. Highly doped transparent conducting oxide (TCO) thin films can support the so‐called epsilon near zero (ENZ) modes in a frequency region of near‐zero permittivity, which can lead to the perfect light absorption and ultrastrong electric field intensity enhancement (FIE) within the films. To achieve full control over absorption and FIE, one must be able to tune the ENZ material properties as well as the film thickness. Here, engineered absorption and FIE are experimentally demonstrated in aluminum‐doped zinc oxide (AZO) thin films via control of their ENZ wavelengths, optical losses, and film thicknesses, tuned by adjusting the atomic layer deposition (ALD) parameters such as dopant ratio, deposition temperature, and the number of macrocycles. It is also demonstrated that under ENZ mode excitation, though the absorption and FIE are inherently related, the film thickness required for observing maximum absorption differs significantly from that for maximum FIE. This study on engineering ENZ material properties by optimizing the ALD process will be beneficial for the design and development of next‐generation tailorable photonic devices based on flat, zero‐index optics. 
    more » « less