Generative Adversarial Networks (GANs) have recently drawn tremendous attention in many artificial intelligence (AI) applications including computer vision, speech recognition, and natural language processing. While GANs deliver state-of-the-art performance on these AI tasks, it comes at the cost of high computational complexity. Although recent progress demonstrated the promise of using ReRMA-based Process-In-Memory for acceleration of convolutional neural networks (CNNs) with low energy cost, the unique training process required by GANs makes them difficult to run on existing neural network acceleration platforms: two competing networks are simultaneously co-trained in GANs, and hence, significantly increasing the need of memory and computation resources. In this work, we propose ReGAN – a novel ReRAM-based Process-In-Memory accelerator that can efficiently reduce off-chip memory accesses. Moreover, ReGAN greatly increases system throughput by pipelining the layer-wise computation. Two techniques, namely, Spatial Parallelism and Computation Sharing are particularly proposed to further enhance training efficiency of GANs. Our experimental results show that ReGAN can achieve 240X performance speedup compared to GPU platform averagely, with an average energy saving of 94X.
more »
« less
This content will become publicly available on May 3, 2025
SPASTC: a Spatial Partitioning Algorithm for Scalable Travel-time Computation
Travel-time computation with large transportation networks is often computationally intensive for two main reasons: 1) large computer memory is required to handle large networks; and 2) calculating shortest-distance paths over large networks is computing intensive. Therefore, previous research tends to limit their spatial extent to reduce computational intensity or resolve computational intensity with advanced cyberinfrastructure. In this context, this article describes a new Spatial Partitioning Algorithm for Scalable Travel-time Computation (SPASTC) that is designed based on spatial domain decomposition with computer memory limit explicitly considered. SPASTC preserves spatial relationships required for travel-time computation and respects a user-specified memory limit, which allows efficient and large-scale travel-time computation within the given memory limit. We demonstrate SPASTC by computing spatial accessibility to hospital beds across the conterminous United States. Our case study shows that SPASTC achieves significant efficiency and scalability making the travel-time computation tens of times faster.
more »
« less
- Award ID(s):
- 2118329
- PAR ID:
- 10543127
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- International Journal of Geographical Information Science
- Volume:
- 38
- Issue:
- 5
- ISSN:
- 1365-8816
- Page Range / eLocation ID:
- 803 to 824
- Subject(s) / Keyword(s):
- Accessibility, cyberGIS, parallel computing, spatial domain decomposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a novel approach to endowing neural networks with emergent, long-term, large-scale memory. Distinct from strategies that connect neural networks to external memory banks via intricately crafted controllers and hand-designed attentional mechanisms, our memory is internal, distributed, co-located alongside computation, and implicitly addressed, while being drastically simpler than prior efforts. Architecting networks with multigrid structure and connectivity, while distributing memory cells alongside computation throughout this topology, we observe the emergence of coherent memory subsystems. Our hierarchical spatial organization, parameterized convolutionally, permits efficient instantiation of large-capacity memories, while multigrid topology provides short internal routing pathways, allowing convolutional networks to efficiently approximate the behavior of fully connected networks. Such networks have an implicit capacity for internal attention; augmented with memory, they learn to read and write specific memory locations in a dynamic data-dependent manner. We demonstrate these capabilities on exploration and mapping tasks, where our network is able to self-organize and retain long-term memory for trajectories of thousands of time steps. On tasks decoupled from any notion of spatial geometry: sorting, associative recall, and question answering, our design functions as a truly generic memory and yields excellent results.more » « less
-
Neural network pruning is an essential technique for reducing the size and complexity of deep neural networks, enabling large-scale models on devices with limited resources. However, existing pruning approaches heavily rely on training data for guiding the pruning strategies, making them ineffective for federated learning over distributed and confidential datasets. Additionally, the memory- and computation-intensive pruning process becomes infeasible for recourse-constrained devices in federated learning. To address these challenges, we propose FedTiny, a distributed pruning framework for federated learning that generates specialized tiny models for memory-and computing-constrained devices. We introduce two key modules in FedTiny to adaptively search coarse- and finer-pruned specialized models to fit deployment scenarios with sparse and cheap local computation. First, an adaptive batch normalization selection module is designed to mitigate biases in pruning caused by the heterogeneity of local data. Second, a lightweight progressive pruning module aims to finer prune the models under strict memory and computational budgets, allowing the pruning policy for each layer to be gradually determined rather than evaluating the overall model structure. The experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art approaches, particularly when compressing deep models to extremely sparse tiny models. FedTiny achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91% and the memory footprint by 94.01% compared to state-of-the-art methods.more » « less
-
Efficient Process-in-Memory Architecture Design for Unsupervised GAN-based Deep Learning using ReRAMThe ending of Moore’s Law makes domain-specific architecture as the future of computing. The most representative is the emergence of various deep learning accelerators. Among the proposed solutions, resistive random access memory (ReRAM) based process-inmemory (PIM) architecture is anticipated as a promising candidate because ReRAM has the capability of both data storage and in-situ computation. However, we found that existing solutions are unable to efficiently support the computational needs required by the training of unsupervised generative adversarial networks (GANs), due to the lack of the following two features: 1) Computation efficiency: GAN utilizes a new operator, called transposed convolution. It inserts massive zeros in its input before a convolution operation, resulting in significant resource under-utilization; 2) Data traffic: The data intensive training process of GANs often incurs structural heavy data traffic as well as frequent massive data swaps. Our research follows the PIM strategy by leveraging the energy-efficiency of ReRAM arrays for vector-matrix multiplication to enhance the performance and energy efficiency. Specifically, we propose a novel computation deformation technique that can skip zero-insertions in transposed convolution for computation efficiency improvement. Moreover, we explore an efficient pipelined training procedure to reduce on-chip memory access. The implementation of related circuits and architecture is also discussed. At the end, we present our perspective on the future trend and opportunities of deep learning accelerators.more » « less
-
The ending of Moore’s Law makes domain-specific architecture as the future of computing. The most representative is the emergence of various deep learning accelerators. Among the proposed solutions, resistive random access memory (ReRAM) based process-inmemory (PIM) architecture is anticipated as a promising candidate because ReRAM has the capability of both data storage and in-situ computation. However, we found that existing solutions are unable to efficiently support the computational needs required by the training of unsupervised generative adversarial networks (GANs), due to the lack of the following two features: 1) Computation efficiency: GAN utilizes a new operator, called transposed convolution. It inserts massive zeros in its input before a convolution operation, resulting in significant resource under-utilization; 2) Data traffic: The data intensive training process of GANs often incurs structural heavy data traffic as well as frequent massive data swaps. Our research follows the PIM strategy by leveraging the energy-efficiency of ReRAM arrays for vector-matrix multiplication to enhance the performance and energy efficiency. Specifically, we propose a novel computation deformation technique that can skip zero-insertions in transposed convolution for computation efficiency improvement. Moreover, we explore an efficient pipelined training procedure to reduce on-chip memory access. The implementation of related circuits and architecture is also discussed. At the end, we present our perspective on the future trend and opportunities of deep learning accelerators.more » « less