skip to main content


Title: Relaxation of the turbulent magnetosheath
ABSTRACT

In turbulence, non-linear terms drive energy transfer from large-scale eddies into small scales through the so-called energy cascade. Turbulence often relaxes toward states that minimize energy; typically these states are considered globally. However, turbulence can also relax toward local quasi-equilibrium states, creating patches or cells where the magnitude of non-linearity is reduced and the energy cascade is impaired. We show, using data from the Magnetospheric Multiscale (MMS) mission, and for the first time, compelling observational evidence that this ‘cellularization’ of turbulence can occur due to local relaxation in a strongly turbulent natural environment such as the Earth’s magnetosheath.

 
more » « less
NSF-PAR ID:
10440319
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 67-72
Size(s):
["p. 67-72"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the impact of compressibility on two-dimensional turbulent flows, such as those modeling astrophysical disks. We demonstrate that the direction of cascade undergoes continuous transition as the Mach numberMaincreases, from inverse atMa = 0, to direct atMa=. Thus, atMa1comparable amounts of energy flow from the pumping scale to large and small scales, in accord with previous data. For supersonic turbulence withMa1the cascade is direct, as in three dimensions, which results in multifractal density field. For that regime (Ma1) we derive a Kolmogorov-type law for potential forcing and obtain an explicit expression for the third order correlation tensor of the velocity. We further show that all third order structure functions are zero up to first order in the inertial range scales, which is in sharp contrast with incompressible turbulence where the third order structure function, that describes the energy flux associated with the energy cascade is non-zero. The properties of compressible turbulence have significant implications on the amplification of magnetic fields in conducting fluids. We thus demonstrate that imposing external magnetic field on compressible flows of conducting fluids allows to manipulate the flow producing possibly large changes even at small Mach numbers. Thus Zeldovich’s antidynamo theorem, by which atMa = 0 the magnetic field is zero in the steady state, must be used with caution. Real flows have finiteMaand, however small it is, for large enough values ofI, the magnetic flux through the disk, the magnetic field changes the flow appreciably, or rearranges it completely. This renders the limitMa → 0 singular for non-zero values ofI. Of particular interest is the effect of the density multifractality, atMa1which is relevant for astrophysical disks. We demonstrate that in that regime, in the presence of non-zeroIthe magnetic field energy is enhanced by a large factor as compared to its estimates based on the mean field. Finally, based on the insights described above, we propose a novel two-dimensional Burgers’ turbulence, whose three-dimensional counterpart is used for studies of the large-scale structure of the Universe, as a model for supersonic two-dimensional magnetohydrodynamic flows.

     
    more » « less
  2. Based on a generalized local Kolmogorov–Hill equation expressing the evolution of kinetic energy integrated over spheres of size$\ell$in the inertial range of fluid turbulence, we examine a possible definition of entropy and entropy generation for turbulence. Its measurement from direct numerical simulations in isotropic turbulence leads to confirmation of the validity of the fluctuation relation (FR) from non-equilibrium thermodynamics in the inertial range of turbulent flows. Specifically, the ratio of probability densities of forward and inverse cascade at scale$\ell$is shown to follow exponential behaviour with the entropy generation rate if the latter is defined by including an appropriately defined notion of ‘temperature of turbulence’ proportional to the kinetic energy at scale$\ell$.

     
    more » « less
  3. Abstract

    We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean, which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (mω) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the finescale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solutions are reinstated to the status of “constant-downscale-flux” solutions. This is consequential for an understanding of energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”

    Significance Statement

    The global circulation models cannot resolve the scales of the oceanic internal waves. The finescale parameterization of turbulent dissipation, a formula grounded in observations, is the standard tool by which the energy transfers due to internal waves are incorporated in the global models. Here, we provide an interpretation of this parameterization formula building on the first-principles statistical theory describing energy transfers between waves at different scales. Our result is in agreement with the finescale parameterization and points out a large contribution to the energy fluxes due to a type of wave interactions (local) usually disregarded. Moreover, the theory on which the traditional understanding of the parameterization is mainly built, a “diffusion approximation,” is known to be partly in contradiction with observations. We put forward a solution to this problem, visualized by means of “streamlines” that improve the intuition of the direction of the energy cascade.

     
    more » « less
  4. Abstract

    We investigate the local proton energization at magnetic discontinuities/intermittent structures and the corresponding kinetic signatures in velocity phase space in Alfvénic (high cross helicity) and non-Alfvénic (low cross helicity) wind streams observed by Parker Solar Probe. By means of the partial variance of increments method, we find that the hottest proton populations are localized around compressible, coherent magnetic structures in both types of wind. Analysis of parallel and perpendicular temperature distributions suggest that the Alfvénic wind undergoes preferential enhancements ofTat such structures, whereas the non-Alfvénic wind experiences preferentialTenhancements. Although proton beams are present in both types of wind, the proton velocity distribution function displays distinct features. Hot beams, i.e., beams with beam-to-core perpendicular temperatureT⊥,b/T⊥,cup to three times larger than the total distribution anisotropy, are found in the non-Alfvénic wind, whereas colder beams are in the Alfvénic wind. Our data analysis is complemented by 2.5D hybrid simulations in different geometrical setups, which support the idea that proton beams in Alfvénic and non-Alfvénic wind have different kinetic properties and different origins. The development of a perpendicular nonlinear cascade, favored in balanced turbulence, allows a preferential relative enhancement of the perpendicular plasma temperature and the formation of hot beams. Cold field-aligned beams are instead favored by Alfvén wave steepening. Non-Maxwellian distribution functions are found near discontinuities and intermittent structures, pointing to the fact that the nonlinear formation of small-scale structures is intrinsically related to the development of highly nonthermal features in collisionless plasmas. Our results contribute to understanding the role of different coherent structures in proton energization and their implication in collisionless energy dissipation processes in space plasmas.

     
    more » « less
  5. Abstract

    While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that damping and steepening of the compressive turbulent power spectrum are expected once the damping timetdampρv2/ĖCRECR1becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced damping, saturating atĖCRϵ˜, whereϵ˜is the turbulent energy input rate. In that case, almost all of the energy in large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering ofE≳ 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale motions, with kinetic energy reduced by up to 1 order of magnitude in realisticECREgscenarios, but turbulence (with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly underestimate turbulent forcing rates, i.e.,ϵ˜ρv3/L.

     
    more » « less