skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local Proton Heating at Magnetic Discontinuities in Alfvénic and Non-Alfvénic Solar Wind
Abstract We investigate the local proton energization at magnetic discontinuities/intermittent structures and the corresponding kinetic signatures in velocity phase space in Alfvénic (high cross helicity) and non-Alfvénic (low cross helicity) wind streams observed by Parker Solar Probe. By means of the partial variance of increments method, we find that the hottest proton populations are localized around compressible, coherent magnetic structures in both types of wind. Analysis of parallel and perpendicular temperature distributions suggest that the Alfvénic wind undergoes preferential enhancements ofTat such structures, whereas the non-Alfvénic wind experiences preferentialTenhancements. Although proton beams are present in both types of wind, the proton velocity distribution function displays distinct features. Hot beams, i.e., beams with beam-to-core perpendicular temperatureT⊥,b/T⊥,cup to three times larger than the total distribution anisotropy, are found in the non-Alfvénic wind, whereas colder beams are in the Alfvénic wind. Our data analysis is complemented by 2.5D hybrid simulations in different geometrical setups, which support the idea that proton beams in Alfvénic and non-Alfvénic wind have different kinetic properties and different origins. The development of a perpendicular nonlinear cascade, favored in balanced turbulence, allows a preferential relative enhancement of the perpendicular plasma temperature and the formation of hot beams. Cold field-aligned beams are instead favored by Alfvén wave steepening. Non-Maxwellian distribution functions are found near discontinuities and intermittent structures, pointing to the fact that the nonlinear formation of small-scale structures is intrinsically related to the development of highly nonthermal features in collisionless plasmas. Our results contribute to understanding the role of different coherent structures in proton energization and their implication in collisionless energy dissipation processes in space plasmas.  more » « less
Award ID(s):
2141564
PAR ID:
10494523
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
963
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 148
Size(s):
Article No. 148
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent observations of the solar wind ions by the SPAN-I instruments on board the Parker Solar Probe (PSP) spacecraft at solar perihelia (Encounters) 4 and closer find ample evidence of complex anisotropic non-Maxwellian velocity distributions that consist of core, beam, and “hammerhead” (i.e., anisotropic beam) populations. The proton core populations are anisotropic, withT/T > 1, and the beams have super-Alfvénic speed relative to the core (we provide an example from Encounter 17). Theα-particle population shows similar features to the protons. These unstable velocity distribution functions (VDFs) are associated with enhanced, right-hand (RH) and left-hand (LH) polarized ion-scale kinetic wave activity, detected by the FIELDS instrument. Motivated by PSP observations, we employ nonlinear hybrid models to investigate the evolution of the anisotropic hot-beam VDFs and model the growth and the nonlinear stage of ion kinetic instabilities in several linearly unstable cases. The models are initialized with ion VDFs motivated by the observational parameters. We find rapidly growing (in terms of proton gyroperiods) combined ion-cyclotron and magnetosonic instabilities, which produce LH and RH ion-scale wave spectra, respectively. The modeled ion VDFs in the nonlinear stage of the evolution are qualitatively in agreement with PSP observations of the anisotropic core and “hammerhead” velocity distributions, quantifying the effect of the ion kinetic instabilities on wind plasma heating close to the Sun. We conclude that the wave–particle interactions play an important role in the energy transfer between the magnetic energy (waves) and random particle motion, leading to anisotropic solar wind plasma heating. 
    more » « less
  2. Abstract Strong magnetically dominated Alfvénic turbulence is an efficient engine of nonthermal particle acceleration in a relativistic collisionless plasma. We argue that in the limit of strong magnetization, the type of energy distribution attained by accelerated particles depends on the relative strengths of turbulent fluctuationsδB0and the guide fieldB0. IfδB0≪B0, the particle magnetic moments are conserved, and the acceleration is provided by magnetic curvature drifts. Curvature acceleration energizes particles in the direction parallel to the magnetic field lines, resulting in log-normal tails of particle energy distribution functions. Conversely, ifδB0≳B0, interactions of energetic particles with intense turbulent structures can scatter particles, creating a population with large pitch angles. In this case, magnetic mirror effects become important, and turbulent acceleration leads to power-law tails of the energy distribution functions. 
    more » « less
  3. Abstract The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics. 
    more » « less
  4. Abstract This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fexi789.2 nm (Tfexi= 1.2 ± 0.1 MK), and Fexiv530.3 nm (Tfexiv= 1.8 ± 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fexiemission from Fe10+and hence a constant electron temperature,Tc=Tfexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300–700 km s−1stream speeds, referred to as the continual solar wind. Thus, Fe10+yields the fiducial link between the continual solar wind and itsTfexisources at the Sun. While the spatial distribution of Fexivemission from Fe13+associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures ≥Tfexivwithin the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the sameTfexiin the expanding corona places new constraints on the physical processes shaping the solar wind. 
    more » « less
  5. Abstract Three-dimensional hybrid kinetic simulations are conducted with particle protons and warm fluid electrons. Alfvénic fluctuations initialized at large scales and with wavevectors that are highly oblique with respect to the background magnetic field evolve into a turbulent energy cascade that dissipates at proton kinetic scales. Accompanying the proton scales is a spectral magnetic helicity signature with a peak in magnitude. A series of simulation runs are made with different large-scale cross helicity and different initial fluctuation phases and wavevector configurations. From the simulations a so-called total magnetic helicity peak is evaluated by summing contributions at a wavenumber perpendicular to the background magnetic field. The total is then compared with the reduced magnetic helicity calculated along spacecraft-like trajectories through the simulation box. The reduced combines the helicity from different perpendicular wavenumbers and depends on the sampling direction. The total is then the better physical quantity to characterize the turbulence. On average the ratio of reduced to total is 0.45. The total magnetic helicity and the reduced magnetic helicity show intrinsic variability based on initial fluctuation conditions. This variability can contribute to the scatter found in the observed distribution of solar wind reduced magnetic helicity as a function of cross helicity. 
    more » « less