Landscape analyses are typically done using spatially explicit color aerial imagery. However, working with non-spatial black and white historical aerial photographs presents several challenges that require a combination of techniques and approaches. We analyzed 113 aerial images covering approx. 700 km2 (270 mi2) including all of Baltimore City, and a portion of Baltimore County surrounding the City. The images were taken between August 23rd 1952 and February 14th 1953. High-resolution scans were georeferenced and georectified against modern satellite imagery of the area and then combined to create a single raster mosaic. This process converted the images from a disparate set of photographs into a spatially explicit GIS data set that can be used to observe changes in land patches over time—and ultimately integrated with other long-term social, economic, and ecological data.
more »
« less
Using machine learning to achieve simultaneous, georeferenced surveys of fish and benthic communities on shallow coral reefs
Abstract Surveying coastal systems to estimate distribution and abundance of fish and benthic organisms is labor‐intensive, often resulting in spatially limited data that are difficult to scale up to an entire reef or island. We developed a method that leverages the automation of a machine learning platform, CoralNet, to efficiently and cost‐effectively allow a single observer to simultaneously generate georeferenced data on abundances of fish and benthic taxa over large areas in shallow coastal environments. Briefly, a researcher conducts a fish survey while snorkeling on the surface and towing a float equipped with a handheld GPS and a downward‐facing GoPro, passively taking ~ 10 photographs per meter of benthos. Photographs and surveys are later georeferenced and photographs are automatically annotated by CoralNet. We found that this method provides similar biomass and density values for common fishes as traditional scuba‐based fish counts on fixed transects, with the advantage of covering a larger area. Our CoralNet validation determined that while photographs automatically annotated by CoralNet are less accurate than photographs annotated by humans at the level of a single image, the automated approach provides comparable or better estimations of the percent cover of the benthic substrates at the level of a minute of survey (~ 50 m2of reef) due to the volume of photographs that can be automatically annotated, providing greater spatial coverage of the site. This method can be used in a variety of shallow systems and is particularly advantageous when spatially explicit data or surveys of large spatial extents are necessary.
more »
« less
- PAR ID:
- 10440371
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 21
- Issue:
- 8
- ISSN:
- 1541-5856
- Page Range / eLocation ID:
- p. 451-466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Landscape analyses are typically done using spatially explicit color aerial imagery. However, working with non-spatial black and white historical aerial photographs presents several challenges that require a combination of techniques and approaches. We analyzed 93 aerial images covering 544 km2 (210 mi2) including all of Baltimore City, and an area immediately adjacent to the city known at the time as the Metropolitan District of Baltimore County. The images were taken from a biplane between October 1926 and February 1927. High-resolution scans were georeferenced and georectified against modern satellite imagery of the area and then combined to create a single raster mosaic. This process converted the images from a disparate set of photographs into a spatially explicit GIS data set that can be used to observe changes in land patches over time—and ultimately integrated with other long-term social, economic, and ecological data.more » « less
-
To better understand the decline of one of earth’s most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network’s biodiversity monitoring program at Carrie Bow Cay, Belize. Our analysis shows that scleractinian coral cover on forereef sites (at depths of 3–10 m) along our surveyed transects increased significantly from 6 to 13% during this period. More modest changes in macroalgae, turf algae, and sponge cover were also observed. Community-wide analysis confirmed a significant shift in benthic structure, and follow-up in situ surveys of coral demographics in 2019 revealed that the emerging coral communities are dominated by fast-recruiting and growing coral species belonging to the genera Agaricia and Porites. While the positive trajectory reported here is promising, Belizean reefs face persistent challenges related to overfishing and climate change. Open-source computational toolkits offer promise for increasing the efficiency of reef monitoring, and therefore our ability to assess the future of coral reefs in the face of rapid environmental change.more » « less
-
Ecosystems are intrinsically linked, such that management actions in one ecosystem can influence adjacent ecosystems. However, adequate data, and even protocols, for monitoring cross-ecosystem responses to conservation initiatives are lacking. Here, we evaluate potential indicators, operating on different spatial, temporal, and biological scales, for measuring the effects of island-based restoration on coral reef ecosystems. We show that island restoration status had consistent effects on populations of tropical seabirds across spatial scales from 100 m to entire islands. Seabirds, in turn, provided nutrient subsidies that were incorporated by marine algae and coral-reef fishes, with the most pronounced effects closer to shore, at leeward sites, and at low trophic levels. Microbes and macroalgae exhibited assemblage-level responses to seabird-derived nutrients entering the marine environment, but there were few differences in coral reef benthic and fish assemblages. By identifying and focusing on specific indicators such as macroalgal nutrients, managers can better monitor cross-ecosystem responses to conservation interventions with limited resources.more » « less
-
Abstract Submarine groundwater discharge (SGD) is an important transporter of solutes and fresh water in coastal systems worldwide. In high island systems with a mixed semidiurnal tidal cycle driving SGD, coastal biogeochemistry is temporally and spatially variable. Past studies have shown that SGD covaries with the local species composition, diversity, and richness of biological communities on a scale of meters. Empirical orthogonal function analyses (EOF)—a method analogous to principal components analysis which finds spatial patterns of variability and their time variation period—were used to define both the spatial and temporal variation in SGD using spatially resolved time series of salinity. The first two EOFs represented variability at the tidal 12‐h period and the daily 24‐h period, respectively, and were responsible for more than 50% of the SGD‐derived salinity variability. We used the first two EOFs to explore spatiotemporally explicit patterns in SGD variability and their relationships with benthic community structure in reef systems. Distance‐based linear models found significant relationships between multivariate community structure and variability in SGD at different periods. Taxa‐specific logistic regressions showed that zoanthids and turf are more likely to be present in areas with high tidally driven SGD variability, while the inverse relationship is true for the invasive rhodophyteAcanthophora spicifera, calcifying macroalgae, the native rhodophytePterocladiellasp., the cyanobacteriaLyngbyasp., and the invasive chlorophyteAvrainvillea amadelpha. These results show that benthic communities vary with respect to SGD derived salinity at the scale of hundreds of meters resulting in spatially heterogeneous biotic patches.more » « less
An official website of the United States government
