skip to main content


Title: Single-beam plasma source deposition of carbon thin films

A single-beam plasma source was developed and used to deposit hydrogenated amorphous carbon (a-C:H) thin films at room temperature. The plasma source was excited by a combined radio frequency and direct current power, which resulted in tunable ion energy over a wide range. The plasma source could effectively dissociate the source hydrocarbon gas and simultaneously emit an ion beam to interact with the deposited film. Using this plasma source and a mixture of argon and C2H2 gas, a-C:H films were deposited at a rate of ∼26 nm/min. The resulting a-C:H film of 1.2 µm thick was still highly transparent with a transmittance of over 90% in the infrared range and an optical bandgap of 2.04 eV. Young’s modulus of the a-C:H film was ∼80 GPa. The combination of the low-temperature high-rate deposition of transparent a-C:H films with moderately high Young’s modulus makes the single-beam plasma source attractive for many coatings applications, especially in which heat-sensitive and soft materials are involved. The single-beam plasma source can be configured into a linear structure, which could be used for large-area coatings.

 
more » « less
Award ID(s):
1917577
PAR ID:
10440372
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
11
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A single beam plasma source was used to deposit hydrogenated amorphous carbon (a-C:H) coatings at room temperature. Using methane source gas, a-C:H coatings were deposited at different radio frequency (RF) power to fabricate transparent and durable coatings. The film deposition rate was almost linearly proportional to the ion source power. Hydrogenated amorphous carbon films of ~100 nm thickness appeared to be highly transparent from UV to the infrared range with a transmittance of ~90% and optical bandgap of ~3.7 eV. The coatings also possess desirable mechanical properties with Young’s modulus of ~78 GPa and density of ~1.9 g/cm3. The combined material properties of high transmittance and high durability make the ion-source-deposited a-C:H coatings attractive for many applications. 
    more » « less
  2. Abstract A single-beam ion source was developed and used in combination with magnetron sputtering to modulate the film microstructure. The ion source emits a single beam of ions that interact with the deposited film and simultaneously enhances the magnetron discharge. The magnetron voltage can be adjusted over a wide range, from approximately 240 to 130 V, as the voltage of the ion source varies from 0 to 150 V, while the magnetron current increases accordingly. The low-voltage high-current magnetron discharge enables a ‘soft sputtering mode’, which is beneficial for thin-film growth. Indium tin oxide (ITO) thin films were deposited at room temperature using a combined single-beam ion source and magnetron sputtering. The ion beam resulted in the formation of polycrystalline ITO thin films with significantly reduced resistivity and surface roughness. Single-beam ion-source-enhanced magnetron sputtering has many potential applications in which low-temperature growth of thin films is required, such as coatings for organic solar cells. 
    more » « less
  3. Abstract

    Silver thin films have wide-ranging applications in optical coatings and optoelectronic devices. However, their poor wettability to substrates such as glass often leads to an island growth mode, known as the Volmer–Weber mode. This study demonstrates a method that utilizes a low-energy ion beam (IB) treatment in conjunction with magnetron sputtering to fabricate continuous silver films as thin as 6 nm. A single-beam ion source generates low-energy soft ions to establish a nominal 1 nm seed silver layer, which significantly enhances the wettability of the subsequently deposited silver films, resulting in a continuous film of approximately 6 nm with a resistivity as low as 11.4µΩ.cm. The transmittance spectra of these films were found to be comparable to simulated results, and the standard 100-grid tape test showed a marked improvement in adhesion to glass compared to silver films sputter-deposited without the IB treatment. High-resolution scanning electron microscopy images of the early growth stage indicate that the IB treatment promotes nucleation, while films without the IB treatment tend to form isolated islands. X-ray diffraction patterns indicate that the (111) crystallization is suppressed by the soft IB treatment, while growth of large crystals with (200) orientation is strengthened. This method is a promising approach for the fabrication of silver thin films with improved properties for use in optical coatings and optoelectronics.

     
    more » « less
  4. The (SmxGa1−x)2O3 alloy system is a potential new dielectric for compound semiconductors such as GaAs. Using molecular beam epitaxy under metal-modulated growth conditions, we grew the binary oxide, Sm2O3, at two substrate temperatures (100 and 500 °C) and optimized the structural, morphological, and electrical properties of the films. Decreasing the Sm cell temperature suppressed the formation of the monoclinic phase and promoted the growth of the cubic phase. Next, the ternary oxide, (SmxGa1−x)2O3, was deposited to investigate the effects of Ga incorporation. Optimization experiments were used to determine the effects of substrate temperature and samarium cell temperature (i.e., growth rate) on film stoichiometry, phase distribution, and microstructure in these films. Films grown at 500 °C showed significant surface roughness and the presence of multiple crystalline phases. Since all of the Sm-based oxides (i.e., samarium oxide with and without gallium) were found to have unbonded Sm metal, annealing experiments were carried out in oxygen and forming gas to determine the effects of annealing on film stoichiometry. The motivation behind annealing in forming gas was to see whether this commonly used technique for reducing interface densities could improve the film quality. GaAs metal-oxide-semiconductor diodes with (SmxGa1−x)2O3 showed breakdown fields at 1 mA/cm2 of 4.35 MV/cm, which decreased with increasing Sm unbonded metal content in the films.

     
    more » « less
  5. ABSTRACT Polydopamine (PDA) is a biopolymer, which can form uniform thin films on almost all solid substrates as well as at the liquid/air interface. Carbonized polydopamine possesses graphite-like structure and exhibits high electrical conductivity, which makes it a potential carbon-based thin film conductor. However, studies on mechanical behavior of PDA and its derived materials are very limited. In this study, PDA samples were synthesized through self-assembly of dopamine in aqueous solution. Elastic modulus of thin films was measured using the nanoindentation technique. It is shown that the Young’s modulus of PDA thin film increased with increasing heat treatment temperature (up to 600°C). Doping with Cu ions also increased the Young’s modulus of PDA. Furthermore, all PDA thin films, with and without Cu, exhibited creep behavior. 
    more » « less