A self-powered, and self-actuating lithium ion battery (LIB) has the potential to achieve large deformation while still maintaining actuation force. The energy storage capability allows for continual actuation without an external power source once charged. Reshaping the actuator requires a nonuniform distribution of charge and/or bending stiffness. Spatially varying the state of charge and bending stiffness along the length of a segmented unimorph configuration have the effect of improving the tailorability of the deformed actuator. In this paper, an analytical model is developed to predict the actuation properties of the segmented unimorph beam to determine its usefulness as an actuator. The model predicts the free deflection, blocked deflection, and blocked force at the tip as a function of spatially varying state of charge and bending stiffness. The main contribution of the paper is the development of blocked deflection over the length of the segmented unimorph, which has not yet been considered in the literature. The model is verified using experimental data and commercial finite element analysis. 
                        more » 
                        « less   
                    
                            
                            Analytical modeling of a magnetoactive elastomer unimorph
                        
                    
    
            Abstract Magnetoactive elastomers (MAEs) are capable of large deformation, shape programming, and moderately large actuation forces when driven by an external magnetic field. These capabilities enable applications such as soft grippers, biomedical devices, and actuators. To facilitate complex shape deformation and enhanced range of motion, a unimorph can be designed with varying geometries, behave spatially varying multi-material properties, and be actuated with a non-uniform external magnetic field. To predict actuation performance under these complex conditions, an analytical model of a segmented MAE unimorph is developed based on beam theory with large deformation. The effect of the spatially-varying magnetic field is approximated using a segment-wise effective torque. The model accommodates spatially varying concentrations of magnetic particles and differentiates between the actuation mechanisms of hard and soft magnetic particles by accommodating different assumptions concerning the magnitude and direction of induced magnetization under a magnetic field. To validate the accuracy of the model predictions, four case studies are considered with various magnetic particles and matrix materials. Actuation performance is measured experimentally to validate the model for the case studies. The results show good agreement between experimental measurements and model predictions. A further parametric study is conducted to investigate the effects of the magnetic properties of particles and external magnetic fields on the free deflection. In addition, complex shape programming of the unimorph actuator is demonstrated by locally altering the geometric and material properties. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10440397
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Smart Materials and Structures
- Volume:
- 32
- Issue:
- 9
- ISSN:
- 0964-1726
- Page Range / eLocation ID:
- Article No. 095021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In this research, we investigate multi-stimuli responsive multimaterial structures by combining shape memory polymers (SMPs) with magnetoactive fillers. Our objective is to design 3D-printed composites with local and global magnetoactive filler gradients, which exhibit complex shape actuation under magnetic and thermal fields. We first carry out a rheological study of SMP dispersions containing surface-treated magnetic particles to understand the effect of magnetic particle surface treatment, additives content, and shear rate on the complex flow behavior. Our findings reveal that dispersions filled with surface-treated magnetic particles exhibit enhanced shear thinning behavior and shape integrity compared to unfunctionalized dispersions. The improved rheological behavior and shape integrity are important results that indicate that PEG-functionalized SMP composites are promising candidates for direct ink printing. To create complex actuation, a 3D printing system is designed in a way that the magnetic particle-SMP dispersions are oriented using both shear and an external magnetic field, enabling a local angular gradient of magnetic particles. In addition, a global gradient is designed-in by varying the volume fraction of magnetic particles in the SMP suspensions. By adjusting the local and global gradients of magnetic particles within the SMP, different actuation patterns can be achieved. SEM analysis confirms the presence of the global gradient in iron oxide particles and their alignment along the magnetic field direction post-printing. Vibrating Sample Magnetometry (VSM) studies reveal an improved mass magnetization along the length of the printed samples, moving away from the printing origin. In addition, the iron oxide weight percent in the samples increases from 2.5 wt.% at the printing origin to 12.5wt.% at the end, creating a pronounced Fe3O4 global gradient. These findings contribute to the development of advanced stimuli-responsive materials with tunable properties for various applications where complex shape actuation is required, including soft robotics, and biomedical devices.more » « less
- 
            null (Ed.)Abstract Hard-magnetic soft active materials have drawn significant research interest in recent years due to their advantages of untethered, rapid and reversible actuation, and large shape change. These materials are typically fabricated by embedding hard-magnetic particles in a soft matrix. Since the actuation is achieved by transferring the microtorques generated on the magnetic particles by the applied magnetic field to the soft matrix, the actuation depends on the interactions between the magnetic particles and the soft matrix. In this paper, we investigate how such interactions can affect the actuation efficiency by using a micromechanics approach through the representative volume element simulations. The micromechanics reveals that particle rotations play an essential role in determining the actuation efficiency, i.e., the torque transmission efficiency. In particular, a larger local particle rotation in the matrix would reduce the effective actuation efficiency. Micromechanics simulations further show that the efficiency of the torque transmission from the particles to the matrix depends on the particle volume fraction, the matrix modulus, the applied magnetic field strength, as well as the particle shape. Based on the micromechanics simulations, a simple theoretical model is developed to correlate the torque transmission efficiency with the particle volume fraction, the matrix modulus, as well as the applied magnetic field strength. We anticipate this study on the actuation efficiency of hard-magnetic soft active materials would provide optimization and design guidance to the parameter determination for the material fabrication for different applications.more » « less
- 
            Abstract Stimuli‐responsive hydrogels with programmable shapes produced by defined patterns of particles are of great interest for the fabrication of small‐scale soft actuators and robots. Patterning the particles in the hydrogels during fabrication generally requires external magnetic or electric fields, thus limiting the material choice for the particles. Acoustically driven particle manipulation, however, solely depends on the acoustic impedance difference between the particles and the surrounding fluid, making it a more versatile method to spatially control particles. Here, an approach is reported by combining direct acoustic force to align photothermal particles and photolithography to spatially immobilize these alignments within a temperature‐responsive poly(N‐isopropylacrylamide) hydrogel to trigger shape deformation under temperature change and light exposure. The spatial distribution of particles can be tuned by the power and frequency of the acoustic waves. Specifically, changing the spacing between the particle patterns and position alters the bending curvature and direction of this composite hydrogel sheet, respectively. Moreover, the orientation (i.e., relative angle) of the particle alignments with respect to the long axis of laser‐cut hydrogel strips governs the bending behaviors and the subsequent shape deformation by external stimuli. This acousto‐photolithography provides a means of spatiotemporal programming of the internal heterogeneity of composite polymeric systems.more » « less
- 
            Smart structures with actuation function are desired for aerospace applications, including morphing airfoils, deployable structures and more. While shape memory alloys and piezoelectric ceramics and polymers are currently a popular smart material options for such applications, magnetoelastomers (MEs) can be uniquely actuated with application of non-contact magnetic field. Magnetoelastomers (MEs), composite materials made of magnetic particles and soft, non-magnetic matrix, can potentially contribute to such smart structures as a light-weight, smart material option with large strain change, fast response time (milliseconds) and anisotropic actuation properties. Other than aerospace applications, MEs, as soft actuators, have been investigated for flexible electronics, soft robotics, and biomedical applications. Anisotropic actuation properties of MEs can be controlled with particle organization within the elastomer. To provide this control, parametric studies on fabrication of MEs need to be performed. This study presents experimental work on nanoparticle organization within MEs using uniaxial, biaxial and triaxial magnetic fields and on the structure-property relationships of MEs. Iron oxide nanoparticles were used as a model nanofillers, and their surfaces were treated with silane coupling agent to improve dispersion and suspension within a polydimethylsiloxane (PDMS) elastomer. The fabricated MEs were inspected using microCT, and their anisotropic susceptibilities are being measured.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
